
Positive subreducts of MV-algebras

Marco Abbadini

University of Salerno, Italy
mabbadini@unisa.it

MV-algebras extend the theory of Boolean algebras by replacing the two-element set of truth
values {0, 1} with the unit interval [0, 1]. They provide the algebraic semantics of  Lukasiewicz
many-valued logic. Inspired by the extensive study of bounded distributive lattices, which are
the negation-free subreducts of Boolean algebras, we study the negation-free subreducts of MV-
algebras. We call these algebras positive MV-algebras because all the terms are order-preserving
in each argument. These algebras can be thought of as the many-valued version of bounded
distributive lattices. We provide some results that can help to further develop the theory of
these algebras:

1. positive MV-algebras are axiomatized by finitely many quasi-equations;

2. generalizing a result by Mundici for MV-algebras and lattice-ordered groups [4], positive
MV-algebras are intervals of certain lattice-ordered monoids;

3. it is a standard result that any bounded distributive lattice L admits a unique Boolean
algebra (called the free Boolean extension of L) in which it embeds so as to generate it
as a Boolean algebra ([5, Thm. 4.1]); similarly, any positive MV-algebra admits a unique
MV-algebra in which it embeds so as to generate it as an MV-algebra. (This is related to
the fact that any equation in the language of MV-algebras is equivalent, for MV-algebras,
to a system of equations in the language of positive MV-algebra.)

This talk is based on [1], [2, Ch. 4], and a joint work with P. Jipsen, T. Kroupa and
S. Vannucci [3].
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