Stone duality for locally finitely residual algebras with a near unanimity term

Marco Abbadini^{1*}and Adam Přenosil²

¹ Università degli Studi di Salerno marco.abbadini.uni@gmail.com ² Universitat de Barcelona adam.prenosil@gmail.com

Keimel & Werner [6] obtained a duality for classes of the form $\mathbb{ISP}(\mathbf{L})$ where \mathbf{L} is a finite quasi-primal algebra. Davey & Werner [5] extended this result to the case where \mathbf{L} is a finite algebra with a near unanimity term. Our main result is an extension of these dualities to the case of a possibly infinite algebra \mathbf{L} (subject to certain hypothesis), although in this case we have to restrict to a subclass of $\mathbb{ISP}(\mathbf{L})$.

1 Description of the main result

For a (possibly infinite) hereditarily finitely subdirectly irreducible algebra \mathbf{L} with a near unanimity term, we provide a duality for the class of algebras \mathbf{A} in $\mathbb{ISP}(\mathbf{L})$ with finitely \mathbf{L} -valued elements, i.e. such that for each $a \in \mathbf{A}$ the set $\{h(a) \mid h: \mathbf{A} \to \mathbf{L} \text{ homomorphism}\}$ is finite. We note that, if \mathbf{L} is finite, any algebra in $\mathbb{ISP}(\mathbf{L})$ has finitely \mathbf{L} -valued elements, and so in this case we obtain a duality for the whole class $\mathbb{ISP}(\mathbf{L})$, as in [5].

In this duality, to each algebra \mathbf{A} is associated a structured set \mathbb{X} in a way such that each element of \mathbf{A} is represented by a function from \mathbb{X} to \mathbf{A} with finite image, and the operations are computed pointwise.

For the sake of simplicity, we present our result in the case where, for each subalgebra \mathbf{A} of \mathbf{L} , the unique homomorphism from \mathbf{A} to \mathbf{L} is the inclusion.

For a natural number k, we let $I \subseteq_k X$ stand for "I is a subset of X with cardinality less than or equal to k".

The following structures will be shown to be dual to algebras in $\mathbb{ISP}(\mathbf{L})$ with finitely **L**-valued elements.

Definition 1 (Priestley L-spaces). Let $k \ge 2$, and let \mathbf{L} be a hereditarily finitely subdirectly irreducible algebra \mathbf{L} with a (k+1)-near unanimity term. Suppose that, for each subalgebra \mathbf{A} of \mathbf{L} , the inclusion $\mathbf{A} \hookrightarrow \mathbf{L}$ is the unique homomorphism from \mathbf{A} to \mathbf{L} . A Priestley L-space consists of a Stone space X, and, for each $I \subseteq_k X$, of a subalgebra \mathbf{A}_I of \mathbf{L}^I with the following properties.

- 1. (Global extension) For every $I \subseteq_k X$ and every $f \in \mathbf{A}_I$ there is a continuous function $g: X \to \mathbf{L}$ (where \mathbf{L} is equipped with the discrete topology) such that $g|_I = f$ and, for every $J \subseteq_k X$, $g|_J \in \mathbf{A}_J$.
- 2. (Separation) For all distinct $x, y \in X$, there is $f \in \mathbf{A}_{\{x,y\}}$ such that $f(x) \neq f(y)$.

Definition 2 (Morphism of Priestley L-spaces). A morphism of Priestley L-spaces f from $(X, (\mathbf{A}_I)_{I \subseteq_k X})$ to $(X', (\mathbf{A}'_I)_{I \subseteq_k X'})$ is a continuous function $f: X \to X'$ such that, for all $I \subseteq_k X$ and all $g \in \mathbf{A}'_{f[I]}, (g \circ f)|_I \in \mathbf{A}_I$.

^{*}Speaker

Stone duality for locally finitely residual algebras

The following is our main result.

Theorem 3. Let $k \ge 2$, and let \mathbf{L} be a hereditarily finitely subdirectly irreducible algebra \mathbf{L} with a (k + 1)-near unanimity term. Suppose that, for each subalgebra \mathbf{A} of \mathbf{L} , the inclusion $\mathbf{A} \hookrightarrow \mathbf{L}$ is the unique homomorphism from \mathbf{A} to \mathbf{L} . The category of algebras in $\mathbb{ISP}(\mathbf{L})$ with finitely \mathbf{L} -valued elements is dually equivalent to the category of Priestley \mathbf{L} -spaces.

2 Applications

As an application of our result, we obtain a representation of the *positive MV-algebras* (i.e. $\{\oplus, \odot, \lor, \land, 0, 1\}$ -subreducts of MV-algebras [2]) with finitely [0, 1]-valued elements; here [0, 1] denotes the $\{\oplus, \odot, \lor, \land, 0, 1\}$ -reduct of the standard MV-algebra [0, 1]. This was the main motivation for our investigation.

For **L** the standard MV-algebra [0, 1], our main result specializes to the duality for weakly locally finite MV-algebras of [4], which in turn generalized the duality for locally finite MValgebras in [3]. This shows that the dualities for MV-algebras in [3, 4] are special instances of a result in universal algebra.

A further application of our main result is a simple description, via duality, of the free MVextension (introduced in [1]) of all positive MV-algebras with finitely [0, 1]-valued elements.

References

- Marco Abbadini, Peter Jipsen and Sara Vannucci. A finite axiomatization of positive MV-algebras. Algebra Universalis, 83(28), 2022. https://doi.org/10.1007/s00012-022-00776-3
- [2] Leonardo M. Cabrer, Peter Jipsen and Tomáš Kroupa. Positive subreducts in finitely generated varieties of MV-algebras. Presented at SYSMICS, Amsterdam, 2019. https://digitalcommons. chapman.edu/scs_articles/612/
- [3] Roberto Cignoli, Eduardo J. Dubuc, and Daniele Mundici. Extending Stone duality to multisets and locally finite MV-algebras. *Journal of Pure and Applied Algebra*, 189:37–59, 2004. https: //doi.org/10.1016/j.jpaa.2003.10.021
- [4] Roberto Cignoli and Vincenzo Marra. Stone duality for real-valued multisets. Forum Mathematicum, 24(6):1317-1331, 2012. https://doi.org/10.1515/form.2011.109
- [5] Brian A. Davey and Heinrich Werner. Dualities and equivalences for varieties of algebras. In Colloquia mathematica societatis János Bolyai 33. Contributions to Lattice Theory (Szeged, 1980), pages 101–275. North-Holland, 1983.
- [6] Klaus Keimel and Heinrich Werner. Stone duality for varieties generated by quasi-primal algebras. In Recent Advances in the Representation Theory of Rings and C*-Algebras by Continuous Sections, number 148 in Memoirs of the American Mathematical Society, pages 59–85, 1974.