PRIESTLEY DUALITY ABOVE DIMENSION ZERO: ALGEBRAIC AXIOMATISABILITY OF THE DUAL OF COMPACT ORDERED SPACES

MARCO ABBADINI

University of Milan, Italy

LUCA REGGIO

University of Bern, Switzerland

Stone showed that the category of Boolean algebras with homomorphisms is dually equivalent to the category of totally disconnected compact Hausdorff spaces with continuous maps [6]. If we drop the assumption of total disconnectedness, we are left with the category KH of compact Hausdorff spaces and continuous maps. Duskin showed that the opposite category KH^{op} is monadic over the category of sets and functions [1, 5.15.3]. In fact, KH^{op} is equivalent to a variety of algebras with primitive operations of countable arity; [3] exhibits a generating set of operations, while [4] provides a finite axiomatisation. Thus, Stone duality can be lifted to compact Hausdorff spaces, retaining the algebraic nature.

Stone established also a duality for (bounded) distributive lattices and homomorphism with the so-called spectral spaces and perfect maps [7]. While spectral spaces are non-Hausdorff, Priestley showed that they can be equivalently described as certain partially ordered topological spaces [5]. More precisely, the category of distributive lattices is dually equivalent to the full subcategory of Nachbin's compact ordered spaces on the totally order-disconnected objects. A *compact ordered space* is a pair (X, \leq) where X is a compact space, and \leq is a partial order on X, closed in the product topology of $X \times X$; a morphism is a monotone continuous map. Similarly to the case of Boolean algebras, one may ask if Priestley duality can be lifted to the category KH_{\leq} of compact ordered spaces, retaining its algebraic nature. In [2], $\mathsf{KH}_{\leq}^{\mathrm{op}}$ is shown to be equivalent to a quasi-variety of (infinitary) algebras, leaving as open the question whether it is equivalent to a variety. We show that the answer is affirmative.

Theorem 1 (Main result). The opposite of the category of compact ordered spaces is equivalent to a variety of (infinitary) algebras.

To prove the theorem, we use the fact that a quasi-variety is a variety if, and only if, every equivalence relation is effective. First, we characterise equivalence relations on a compact ordered space X in the category $\mathsf{KH}^{\mathrm{op}}_{<}$ as certain pre-orders on the

E-mail addresses: marco.abbadini@unimi.it, luca.reggio@math.unibe.ch.

order-topological coproduct X + X. Then, we rephrase effectiveness into an ordertheoretic condition, and show that it is satisfied by every pre-order arising from an equivalence relation.

We also show that it is necessary to resort to infinitary operations.

Theorem 2. The opposite of the category of compact ordered spaces is not equivalent to a variety of finitary algebras.

References

- J. Duskin. Variations on Beck's tripleability criterion. In S. Mac Lane, editor, Reports of the Midwest Category Seminar, III, pages 74–129. Springer, Berlin, 1969.
- [2] D. Hofmann, R. Neves, and P. Nora. Generating the algebraic theory of C(X): the case of partially ordered compact spaces. *Theory Appl. Categ.*, 33:276–295, 2018.
- [3] J. Isbell. Generating the algebraic theory of C(X). Algebra Universalis, 15(2):153–155, 1982.
- [4] V. Marra and L. Reggio. Stone duality above dimension zero: axiomatising the algebraic theory of C(X). Adv. Math., 307:253–287, 2017.
- [5] H. A. Priestley. Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc., 2:186–190, 1970.
- [6] M. H. Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40(1):37–111, 1936.
- [7] M. H. Stone. Topological representations of distributive lattices and brouwerian logics. Časopis pro pěsiování matematiky a fysiky, 67:1–25, 1938.