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1 Introduction

A question, which, to the best of our knowledge, is still open, is the following: is the opposite
of the category CompHaus of compact Hausdorff spaces with continuous maps equivalent to an
elementary class? Approximations of a negative answer were given (see, for example, [1], [2],
[7]); in particular, CompHausop is not equivalent to a finitary variety of algebras; that is, it is
impossible to equationally axiomatize it by operations of finite arity. However, CompHausop is
equivalent to an infinitary variety ∆ whose primitive operations are of at most countable arity
(see [3], [6], [7]).

A related result is the classical Stone-Gelfand duality, which asserts that CompHausop is
equivalent to the category ComplVectLatt of archimedean vector lattices, equipped with a (strong
order) unit, and complete in the unit norm, with unit-preserving vector lattice homomorphisms.
Therefore, we have a chain of equivalences:

CompHausop ∼= ComplVectLatt ∼= ∆. (1)

In this work, we replace the linear structure of the objects of ComplVectLatt with a weaker one –
namely, the structure of abelian groups. We write “norm complete `-group” for “archimedean
lattice-ordered abelian group equipped with a (strong order) unit, and complete in the unit
norm”. We denote by Compl`Gr the category of norm complete `-groups, with unit preserving
group lattice homomorphism. We address the question: is there, analogously to (1), a chain of
equivalences for Compl`Gr of the form

Kop
?∼= Compl`Gr

?∼= V. (2)

for some category K “of spaces” and some (possibly infinitary) variety V?

2 Main results

2.1 Equational axiomatization for norm complete `-groups

Theorem 2.1. The category Compl`Gr of norm complete `-groups is equivalent to an (infini-
tary) variety.

We call CMV the variety in Theorem 2.1 (for “complete MV-algebras”). The set of primitive
operations of CMV that we consider is made of a set of primitive operations of MV-algebras,
together with an operation γ of countably infinite arity. The idea is that, in the intended
models, γ(x0, x1, x2, . . . ) = limn→∞ an whenever (xn)n converges “quickly enough”; precisely,
when, for all n ∈ N, dist(xn, xn+1) ≤ 1

2n+1 .
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2.2 Topological duality for norm complete `-groups

To establish a duality that relates norm complete `-groups to a certain category of “spaces”, a
first important result was proved by Goodearl and Handelman [5, Theorem 5.5]:

Theorem 2.2. Let X be a compact Hausdorff space and C(X,R) be the set of continuous
functions from X into R. For each x ∈ X, let Ax be either R or 1

nZ for some n ∈ N \ {0}. Set

D = {f ∈ C(X,R) | f(x) ∈ Ax for all x ∈ X} ,

and give to D the `-group structure inherited from C(X,R). Then D is a norm complete
`-group. Conversely, any norm complete `-group is isomorphic to one of this form.

The crucial restriction to functions such that f(x) ∈ Ax can be understood as a labelling
on the space X that must be respected by the continuous functions considered. The set of
labels is {R, 11Z,

1
2Z,

1
3Z, . . . }; for convenience, we identify this set with N = {0, 1, 2, 3, . . . },

associating to R the number 0, and to 1
nZ the number n. For q ∈ R, we write den(q) to

denote the denominator of q (in its irreducible form) if q ∈ Q, and 0 otherwise. In this way,
1
nZ = {q ∈ R | den(q) divides n}, and R = {q ∈ R | den(q) divides 0}. Hence, Theorem 2.2
may be restated as follows.

Theorem 2.3. Let X be a compact Hausdorff space and C(X,R) be the set of continuous
functions from X into R. Let ζ : X → N be a function. Set

D = {f ∈ C(X,R) | den(f(x)) divides ζ(x)} ,

and give to D the `-group structure inherited from C(X,R). Then D is a norm complete
`-group. Conversely, any norm complete `-group is isomorphic to one of this form.

This serves as motivation for the definition below. For n ∈ N we shall write div(n) for the
set of natural numbers that divide n.

Definition 2.4. An a-normal space is a compact Hausdorff space X, endowed with a function
ζ : X → N, such that the following conditions hold.

1. For every n ∈ N, ζ−1[div(n)] is closed in the topology τ .

2. For every disjoint closed subsets A and B of X, there exist two open disjoint neighbour-
hoods U and V of A and B, respectively, such that for every x ∈ X \ (U ∪ V ), ζ(x) = 0.

A function f : (X, ζ) → (X ′, ζ ′) between a-normal spaces respects the denominators if, for
every x ∈ X, ζ ′(f(x)) divides ζ(x). We denote by ANorm the category of a-normal spaces with
continuous denominator-respecting maps among them.

Theorem 2.5. The category Compl`Gr of norm complete `-groups is dually equivalent to the
category ANorm of a-normal spaces.

In conclusion:

ANormop ∼= Compl`Gr ∼= CMV. (3)
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