Free extension for universal algebras

Algebra Seminar, NMSU, USA

Marco Abbadini March 14, 2022

University of Salerno, Italy

<u>Abelian group</u> = set G with a binary operation + (the group operation), a constant element 0 (the neutral element) and a unary operation – (additive inverse) such that

(associativity)	$\forall x, y, z$	(x + y) + z = x + (y + z);
(commutativity)	$\forall x, y$	x + y = y + x;
(0 is neutral)	$\forall x$	x + 0 = x;
(- is the inverse)	$\forall x$	x + (-x) = 0.

Let G be an Abelian group, and let S a subset of G that generates G. For every group H and every function $f: S \to H$, there is at most one group homomorphism $\overline{f}: G \to H$ that extends f.

In general, this extension may fail to exist.

E.g.: take S = G and f a function that is not a group homomorphism.

Proposition

Let G be an Abelian group and let $M \subseteq G$ be such that

- 1. M is closed under + and 0, and
- 2. M generates the Abelian group G.

For every Abelian group H and every function $f: M \rightarrow H$ such that

1.
$$f(x+y) = f(x) + f(y)$$
, and
2. $f(0) = 0$.

there exists a unique group homomorphism $\overline{f}: G \to H$ that extends f.

Example

Define $\overline{f}(n) := nf(1)$.

We refer to the previous proposition as 'Abelian groups have the <u>free</u> extension property over the sublanguage $\{+,0\}$ '.

The analogous statement for groups that are not necessarily abelian is false.

Let Free(u, v) be the free group on $\{u, v\}$.

Let $M \subseteq \text{Free}(u, v)$ be the submonoid of Free(u, v) generated by $\{u, v, uv^{-1}u\}$. Example of an element of M:

$$uvvuv^{-1}uuv^{-1}uu$$
.

M generates the group Free(u, v).

Consider the additive group \mathbb{Z} and the map $f: M \to \mathbb{Z}$ that maps $w \in M$ to the number of occurrences of v^{-1} in w.

We have $f(w \cdot z) = f(w) + f(z)$, and f(1) = 0.

The map f cannot be extended to a group homomorphism, because $f(uv^{-1}u) = 1$, but f(u) - f(v) + f(u) = 0.

Recall (free extension property of Abelian groups over $\{+, 0\}$) *G* group, *M* generating submonoid, *H* group and $f: M \to H$ monoid homomorphism. There is a group hom. $\overline{f}: G \to H$ that extends *f*.

Lemma

Let G be an Abelian group and M a generating subset closed under + and 0. For every $x \in G$ there are $u, v \in M$ such that x = u - v.

Proof of the free extension property.

Set $\overline{f}(u-v) := f(u) - f(v)$. It is well-defined: for $u, v, u', v' \in M$:

$$u - v = u' - v' \iff u + v' = u' + v$$
$$\implies f(u + v') = f(u' + v)$$
$$\iff f(u) + f(v') = f(u') + f(v)$$
$$\iff f(u) - f(v) = f(u') - f(v')$$

Further, one proves that \overline{f} is a group homomorphism.

Key fact used

For every Abelian group G and all $u, v, u', v' \in G$,

$$u-v=u'-v'\iff u+v'=u'+v.$$

Any equation in the language of Abelian groups is equivalent to an equation in the language $\{+,0\}.$

Example

For every abelian group G and all $x, y, z \in G$,

$$x - y + z = y \iff x + z = y + y.$$

The analogous statement for groups that are not necessarily abelian is false.

For example,

$$x = uv^{-1}u$$

cannot be expressed via an equation in the language $\{\cdot, 1\}$.

Otherwise, we would have a contradiction with the fact that the map f from $\{u, v, uv^{-1}u\}^*$ to the additive monoid \mathbb{Z} that maps w to the number of occurrences of v^{-1} in w is a monoid homomorphism.

Proposition

Let *B* be a Boolean algebra, and let $L \subseteq B$ be such that

- 1. L is closed under \lor , \land , 0 and 1, and
- 2. L generates the Boolean algebra B.

For every Boolean algebra *C* and every function $f: L \to C$ that preserves \lor , \land , 0 and 1, there exists a unique Boolean homomorphism $\overline{f}: B \to C$ that extends *f*.

'Boolean algebras have the free extension property over the sublanguage $\{\vee,\wedge,0,1\}'.$

A proof of this is analogous to the proof of the free extension property of Abelian groups over $\{+,0\}$ '.

The proof consists of rewriting certain equations in the language of Boolean algebras into an equivalent system of equations in the language $\{\lor, \land, 0, 1\}$.

Example

$$x \wedge \neg y = z \iff \begin{cases} y \wedge z = 0; \\ x \vee y = z \vee y \end{cases}$$

Main result

An <u>algebraic language</u> consists of a set (with elements called <u>function</u> <u>symbols</u>), and, for each function symbol, a natural number (called <u>arity</u>).

E.g.: $\{+, 0, -\}$; arity of + is 2, arity of 0 is 0, arity of - is 1.

An <u>algebra</u> for an algebraic language \mathcal{L} consists of a set A and, for every function symbol $\tau \in \mathcal{L}$, a function $A^n \to A$, where n is the arity of τ .

E.g.: an Abelian group is an algebra for the language $\{+, 0, -\}$.

A class of algebras for a fixed language is called a <u>variety</u> or <u>equational</u> <u>class</u> if it is axiomatized by identities (= universally quantified equations).

Example

The class of Abelian groups is an equational class of algebras.

$$\begin{aligned} \forall x, y, z & (x+y) + z = x + (y+z); \\ \forall x, y & x+y = y+x; \\ \forall x & x+0 = x; \\ \forall x & x+(-x) = 0. \end{aligned}$$

Non-example

Cancellative commutative monoids.

$$\forall x, y, z \quad x + z = y + z \Rightarrow x = y.$$

Other examples of equational classes

Groups, monoids, commutative monoids, semigroups.

Rings, commutative rings, rngs, commutative rngs, \mathbb{R} -vector spaces, \mathbb{K} -vector spaces (for a fixed field \mathbb{K}), *R*-modules (for a fixed ring *R*), algebras over a fixed field \mathbb{K} .

Boolean algebras, lattices, distributive lattices, bounded distributive lattices, Heyting algebras, semilattices.

Sets.

Other non-examples

Fields, integral domains.

Let ${\mathcal V}$ be an equational class of algebras, and let Σ be a sublanguage of the language of ${\mathcal V}.$

E.g.:

- 1. $\mathcal{V} = \{\text{Abelian groups}\}, \Sigma = \{+, 0\}, \text{ or}$ 2. $\mathcal{V} = \{\text{Boolean algebras}\}, \Sigma = \{\vee, \wedge, 0, 1\}, \text{ or}$
- 3. $\mathcal{V} = \{\text{groups}\}, \Sigma = \{\cdot, 1\}.$

Definition

We say that $\underline{\mathcal{V}}$ has the free extension property over $\underline{\Sigma}$ if, for every $B \in \mathcal{V}$, every generating $A \subseteq B$ closed under every $\tau \in \Sigma$, every $C \in \mathcal{V}$ and every function $f: A \to C$ that preserves every $\tau \in \Sigma$, there is a unique homomorphism $\overline{f}: B \to C$ that extends f.

The class of Abelian groups has the free extension property over $\{+, 0\}$. The class of groups does not have the free extension property over $\{\cdot, 1\}$. The class of Boolean algebras has the free extension property over $\{\vee, \wedge, 0, 1\}$.

Definition

We say that equations in \mathcal{V} are expressible in Σ (or that \mathcal{V} has the expressibility property over Σ) if, for each pair $(\sigma(x_1, \ldots, x_n), \rho(x_1, \ldots, x_n))$ of terms in the language of \mathcal{V} , there is a finite set of pairs $(\alpha_i(x_1, \ldots, x_n), \beta_i(x_1, \ldots, x_n))$ ($i \in \{1, \ldots, m\}$) in the language Σ such that, for every $A \in \mathcal{V}$ and all $x_1, \ldots, x_n \in A$,

$$\sigma(x_1,\ldots,x_n) = \rho(x_1,\ldots,x_n)$$

$$(1)$$

$$\forall i \in \{1,\ldots,m\} \quad \alpha_i(x_1,\ldots,x_n) = \beta_i(x_1,\ldots,x_n).$$

Equations in the class of Abelian groups are expressible in $\{+, 0\}$.

Equations in the class of groups are not expressible in $\{\cdot, 1\}$ (see $x = uv^{-1}u$).

Equations in the class of Boolean algebras are expressible over $\{\vee,\wedge,0,1\}.$

Free extension property

Given $B \in \mathcal{V}$, a generating Σ -subalgebra $A, C \in \mathcal{V}$ and a Σ -homomorphism $f : A \to C$, there is a unique homomorphism $\overline{f} : B \to C$ extending f.

Expressibility property

Every equation in the language of \mathcal{V} is equivalent (in \mathcal{V}) to a finite set of equations in the language Σ .

Main theorem

Usage in practice: one proves that equations in \mathcal{V} are expressible in Σ , and concludes that \mathcal{V} has the free extension property over Σ .

Recall

Let G be an Abelian group and M a generating submonoid. For every $x \in G$ there are $u, v \in M$ such that x = u - v.

Definition

A class \mathfrak{K} of terms in the language of \mathcal{V} complements Σ if, given $A \in \mathcal{V}$ and a Σ -subalgebra S, the set $\{\tau(x_1, \ldots, x_n) \mid \tau \in \mathfrak{K}, x_1, \ldots, x_n \in S\}$ contains S and is closed under every symbol in the language of \mathcal{V} .

Examples

- For $\mathcal{V} = \{ \text{Abelian groups} \}, \{x y\} \text{ complements } \{+, 0\}.$
- For $\mathcal{V} = \{\text{Boolean algebras}\}, \Sigma = \{0, 1, \lor, \land\},\$

$$\{(u_1 \vee \neg v_1) \land \cdots \land (u_n \vee \neg v_n) \mid n \in \mathbb{N}\}$$

complements Σ .

• For $\mathcal{V} = \{Abelian \text{ groups}\}, a class that complements <math>\{+\}$?

Proposition

Suppose that \Re complements Σ . Equations in \mathcal{V} are expressible in Σ iff, for every pair $\sigma(x_1, \ldots, x_n)$ and $\rho(y_1, \ldots, y_m)$ with $\sigma, \rho \in \Re$, the equation

$$\sigma(x_1,\ldots,x_n)=\rho(y_1,\ldots,y_m)$$

is equivalent to a finite system of equations in the language Σ in variables $x_1, \ldots, x_n, y_1, \ldots, y_m$.

Free extension property

Given $B \in \mathcal{V}$, a generating Σ -subalgebra $A, C \in \mathcal{V}$ and a Σ -homomorphism $f : A \to C$, there is a unique homomorphism $\overline{f} : B \to C$ extending f.

Expressibility property

Every equation in the language of \mathcal{V} is equivalent (in \mathcal{V}) to a finite set of equations in the language Σ .

Examples

- 1. $\mathcal{V} = \{\text{Abelian groups}\}, \Sigma = \{+, 0\}. \text{ YES}.$
- 2. $\mathcal{V} = \{\text{groups}\}, \ \Sigma = \{*,1\}.$ NO.
- 3. $\mathcal{V} = \{\text{Boolean algebras}\}, \Sigma = \{\lor, \land, 0, 1\}.$ YES.
- 4. $\mathcal{V} = \{\text{Abelian groups}\}, \Sigma = \{+\}. \text{ YES}.$
- 5. $\mathcal{V} = \{ \text{Abelian groups} \}, \Sigma = \emptyset$. NO.
- 6. $\mathcal{V} = \{\text{commutative monoids}\}, \Sigma = \{+\}.$ NO.

To sum up

'Complementation' gives a manageable way to check that equations in ${\cal V}$ are expressible in $\Sigma.$

This equivalence generalizes to varieties of possibly infinitary algebras (possibly without rank, but with free algebras), i.e. algebras for a varietal theory (Linton), or equivalently algebras for a monad over Set.

The implication 'expressibility \Rightarrow free extension' is almost straightforward. The converse implication makes use of free algebras.

The result that I presented for finitary algebras (where the expressibility property consists of rewriting every equation into a <u>finite</u> set of equations) is then a consequence of the compactness theorem.