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Stone duality for Boolean algebras [Stone, 1936] states that the category

of Boolean algebras is dually equivalent to the category of Stone spaces

(= compact Hausdorff spaces with a basis of clopens).

De Vries obtained a duality (nowadays called de Vries duality) for the

category KHaus of compact Hausdorff spaces and continuous functions

[de Vries, 1962].
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A regular open subset of a space X is a subset U of X such that

U = int(cl(U)) (in particular, it is open).

Example of regular open subset

U ( ) ( )

cl(U) [ ] [ ]

int(cl(U)) = U ( ) ( )

Example of non-(regular open) subset

U ( x )

cl(U) [ ]

int(cl(U)) ( )
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For any space X , the set RO(X ) of regular open subsets of X is a

complete boolean algebra with respect to the inclusion order

[MacNeille, 1937], [Tarski, 1937].

A ∨ B = int(cl(A ∪ B));

A ∧ B = A ∩ B;

0 = ∅;

1 = X ;

¬A = int(X \ A).

3



To a compact Hausdorff space X , de Vries associated the boolean

algebra RO(X ), equipped with the well-inside relation ≺:

A ≺ B ⇐⇒ cl(A) ⊆ B.

Example

U := ( )

V := ( )

U ≺ V .

Example

W := ( )

W := ( )

W ̸≺ W .

Example

A := ( )

B := ( ) ( )

A ̸≺ B.

X can be recast from the structure of boolean algebra of RO(X ) together

with the relation ≺.
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Definition ([de Vries, 1962])

A de Vries algebra is a complete boolean algebra equipped with a binary

relation ≺ (called proximity) s.t.:

1. a ≺ 1;

2. (a ≺ b, a ≺ c) implies a ≺ b ∧ c ;

3. a ≺ b implies ¬b ≺ ¬a;

4. a ≺ b implies a ≤ b;

5. a ≤ b ≺ c ≤ d implies a ≺ d ;

6. a ≺ b implies that there exists c such that a ≺ c ≺ b.

7. a ̸= 0 implies that there exists b ̸= 0 such that b ≺ a.

For every compact Hausdorff space X , (RO(X ),≺) is a de Vries algebra.

Every de Vries algebra is isomorphic to (RO(X ),≺) for some compact

Hausdorff space X (unique up to homeomorphism) [de Vries, 1962].
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To a continuous function f : X → Y between compact Hausdorff spaces,

de Vries associates the function

f ∗ : RO(Y ) −→ RO(X )

V 7−→ int(cl(f −1[V ])).

This leads to a duality between KHaus and a category DeV whose

objects are de Vries algebras, and whose morphisms are functions

satisfying certain properties [de Vries, 1962]. However,

Composition of morphisms in DeV is not usual function

composition.
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Our proposal:

We work with certain relations as morphisms between de

Vries algebras.

Advantage: composition of morphisms is usual relation composition.
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Working with relations instead of functions is not a new thing: see e.g.

the (dual) equivalences in

1. [Abramsky, Jung, 1994] for spectral spaces,

2. [Jung, Sünderhauf, 1996] for stably compact spaces,

3. [Moshier, 2004], for compact Hausdorff spaces.

We implement the idea of using relations in the context of de Vries

duality.
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Given a continuous function f : X → Y between compact Hausdorff

spaces, we define a relation Sf : RO(X ) → RO(Y ), as follows:

U Sf V ⇐⇒ cl[U] ⊆ f −1[V ] ⇐⇒ f [cl(U)] ⊆ V .

For example, if f : X → X is the identity, then

U Sf V ⇐⇒ U ≺ V .
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Definition

A relation S : A → B between de Vries algebras is called a functional

compatible subordination if

1. S is a subordination:

1.1 0 S b;

1.2 a S 1;

1.3 if a1 S b and a2 S b, then (a1 ∨ a2) S b;

1.4 if a S b1 and a S b2, then a S (b1 ∧ b2);

1.5 if a′ ≤ a S b ≤ b′, then a′ S b′;

2. S is compatible (with the relations ≺A and ≺B):

a S b ⇐⇒ ∃ a′ ∈ A : a ≺A a′ S b ⇐⇒ ∃b′ ∈ B : a S b′ ≺B b;

3. S is functional:

3.1 if a S 0, then a = 0;

3.2 if b1 ≺B b2, then there is a ∈ A s.t. ¬a S ¬b1 and a S b2.
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Given relations X
R−→ Y

S−→ Z , their composite S ◦ R : X → Z is defined

by

x (S ◦ R) z ⇐⇒ ∃y ∈ Y s.t. x R y S z .

Definition

We let DeVF denote the category

� whose objects are de Vries algebras, and

� whose morphisms are functional compatible subordinations.

Composition is usual composition of relations.
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Main Theorem (1/2)

The category KHaus of compact Hausdorff spaces and continuous

functions is equivalent to the category DeVF of de Vries algebras and

functional compatible subordinations.

Equivalence vs duality: a matter of taste: slightly modifying the

functionality axioms one obtains a duality.

Advantage over classical de Vries duality: composition of

morphisms is the usual composition of relations.
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Definition

We let KHausR denote the category

� whose objects are compact Hausdorff spaces, and

� whose morphisms from X to Y are the closed relations R ⊆ X × Y .

Composition of morphisms is the usual composition of relations.
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Main Theorem (2/2)

The category KHausR of compact Hausdorff spaces and closed

relations is equivalent to the category DeVS of de Vries algebras and

compatible subordinations.
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To sum up

Taking certain relations (instead of functions) as morphisms between de

Vries algebras solves some issues.

Furthermore, this approach allows to obtain an equivalence/duality for

the category of compact Hausdorff spaces and closed relations between

them.

M. Abbadini, G. Bezhanishvili, L. Carai

A generalization of de Vries duality to closed relations between compact

Hausdorff spaces

Arxiv preprint at arxiv.org/abs/2206.05711

(2022)

Thank you.
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Backup slides on piggyback on

an equivalence for Stone spaces

and closed relations



We piggyback on a generalization of Stone and Halmos duality.

Stone duality = duality for Stone spaces and continuous functions

between them.

Halmos duality = duality for Stone spaces and continuous relations

between them.

The generalization we need is an equivalence for Stone spaces and closed

relations between them (see [Celani, 2018]), that we recall in the next

slides.
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Definition

We let StoneR denote the category of Stone spaces and closed relations

between them. Composition is composition of relations. The identity

morphism is the equality relation.

To a Stone space X one associates the boolean algebra Clop(X ). To a

closed relation R : X → Y one associates the relation

SR : Clop(X ) → Clop(Y ) defined by

U Sr V ⇐⇒ R[U] ⊆ V .
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Definition

A subordination S : A → B between boolean algebras is a relation s.t.

1. 0 S b;

2. a S 1;

3. if a1 S b and a2 S b, then (a1 ∨ a2) S b;

4. if a S b1 and a S b2, then a S (b1 ∧ b2);

5. if a′ ≤ a S b ≤ b′ then a′ S b′;

This generalizes the notion of subordination on a boolean algebra in

[Bezh., Bezh., Sour., Ven., 2017].

Definition

We let BAS denote the category of boolean algebras and subordinations

between them. Composition of morphisms is relation composition. The

identity morphism on an object A is the order ≤.
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Theorem

The categories StoneR and BAS are equivalent (and also dually

equivalent).

Our equivalence between KHausR and DeVS is a consequence (and then

also the equivalence between KHaus and DeVF follows), as explained in

the next slides.
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A De Vries algebra can be seen as a pair (A,≺) where A is a boolean

algebra (so, an object of BAS) and ≺ is a subordination from A to A (so,

an endomorphism on A in BAS) satisfying additional conditions; for

example, it is idempotent: ≺ ◦ ≺ = ≺.
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Definition ([Freyd, 1964])

The Karoubi envelope (or splitting by idempotents or Cauchy

completion) of a category C is the category K(C)

� whose objects are pairs (X , f ), where X ∈ C and f is an

endomorphism of X such that f ◦ f = f , and

� whose morphisms from (X1, f1) to (X2, f2) are the morphisms

g : X1 → X2 in C such that f2 ◦ g = g = g ◦ f1.

X1 X2

X1 X2

g

g
f1 f2

g

Composition is composition in C. The identity on (X , f ) is f .

Every de Vries algebra is an object of K(BAS). A morphism

(A,≺) → (B,≺) in K(BAS) between de Vries algebras is a compatible

subordination S : A → B.
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StoneR BAS

K(StoneR) K(BAS)

KHausR GleR DeVS

KHaus Gle DeVF.

equiv.

equiv.

equiv. equiv.

full full

equiv.

wide

equiv.

wide wide

A Gleason space [Bezh., Bezh., Sour., Ven., 2017] is a pair (X ,E ) with

X a Stone space and E a closed equivalence relation on X s.t. X → X/E

is a Gleason cover of X/E . Gleason spaces are objects of K(StoneR).

GleR := category of Gleason spaces and “compatible” closed relations

[Bezh., Gab., Hard., Jibl., 2019]. GleR is equivalent to KHausR

(mapping (X ,E ) to X/E ).
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A similar usage of Karoubi envelopes in the context of stably compact

spaces was mentioned in [Kegelmann, 2002] (and suggested by P. Taylor)

and employed in [van Gool, 2012].
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