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Stone duality

Stone duality

Stone representation theorem for Boolean algebras [Stone, 1936] drew a

connection between syntax and semantics: each formula of classical

propositional logic is interpreted as a set of possible worlds, where

� logical “or” ↔ union of sets of worlds,

� logical “and” ↔ intersection of sets of worlds,

� logical “negation” ↔ complementation of set of worlds.

1



Stone duality

Stone’s representation theorem is a duality (= dual categorical

equivalence) between the category of Boolean algebras (syntax) and the

category of Stone spaces (a.k.a. profinite spaces, or Boolean spaces), i.e.

compact Hausdorff spaces with a basis of closed open sets (semantics).

BA ∼= Stoneop.

More information (quotient of algebras A ↠ B)

=

fewer possible worlds (inclusion of spaces XA ←↩ XB).
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Topology ←→ Logic

Stone duality showed how to use topology to do logic.

In the other direction, one can obtain a logical calculus to investigate

topological spaces of interest.
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One of the spaces of most interest in real-life applications is R with its

Euclidean topology.

Consider a rod: What can we say for certain about its length ℓ? We

cannot tell that ℓ = 20 cm. Any measurement will have finite precision:

Maybe we measure 20.1± 0.3 cm, so that we know ℓ ∈ (19.8, 20.4). But

we can never be sure it is exactly 20 cm long.

(It is possible to verify that x ∈ Y ) iff x ∈ int(Y ).

Slogan: open sets are semidecidable properties.
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1. for every value of ℓ, either ℓ ∈ (19, 21) or ℓ /∈ (19, 21).

2. it is not true that, for every value of ℓ, we can verify that

ℓ ∈ (19, 21) or we can verify that ℓ /∈ (19, 21).

3. For every value of ℓ we can verify ℓ ∈ (19, 21) or we can verify

ℓ /∈ [19.1, 20.9]. This uses the facts that [19.1, 20.9] ⊆ (19, 21),

[19.1, 20.9] is closed and (19, 21) is open.

5



For S ,T ⊆ R:

cl(S) ⊆ int(T ) ⇐⇒ for all x we can verify x ∈ T or we can verify x /∈ S

⇐⇒ ”we can verify T or refute S”.

We write S ≺ T (and we say that S is well-inside T ) to mean

cl(S) ⊆ int(T ).

Example

(−1, 1) ≺ (−2, 2].

( )

( ]

Non-example

(0, 1) ̸≺ (−1, 1].

( )

( ]

We should think of S ≺ T as a strict version of containment (S ⊆ T ), or

of entailment/implication.
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Some of the best behaved spaces are compact Hausdorff spaces: these

are the closed subsets of some power of [0, 1]. Just like Stone spaces are

the closed subsets of {0, 1}.

Compact Hausdorff spaces are related to my research because my

background is in many-valued logic, where one takes [0, 1] as the set of

truth values instead of {0, 1}.

[Duskin, 1969]: the category of compact Hausdorff spaces is dual to a

variety of infinitary algebras, which is finitely axiomatizable

[Marra, Reggio, 2017].

[A., Reggio, 2020]: the category of Nachbin’s compact ordered spaces (=

a generalization of Priestley spaces) is dual to a variety of infinitary

algebras, which is finitely axiomatizable [A., 2021]. This is related to a

many-valued positive logic.
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The compact Hausdorff space X can be recovered from the Boolean

algebra P(X ) together with the proximity ≺ defined by S ≺ T iff

cl(S) ⊆ int(T ).

We construct the Stone space Y dual to the Boolean algebra P(X ). (In

this case: Y = β(|X |) is the Stone-Čech compactification of X with

discrete topology.) We associate to ≺ a closed equivalence relation E on

Y . (This requires an extension of Stone duality to closed relations.) We

get X back as the quotient Y /E .

|X | β(|X |)

X
id

The space X is represented by (P(X ),≺).
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P([0, 1]) is hard to treat computationally.

However, there are different possibilities to represent [0, 1] with a pair

(B,≺) via the procedure

(B,≺)→ (Y ,E )→ Y /E ∼= [0, 1].
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Take the following countable Boolean algebra A of subsets of [0, 1]: the

elements of A are [a1, b1) ∪ · · · ∪ [an, bn) with rational endpoints (with

the prescription that you add also 1 if bn = 1.) The relation ≺ is defined

by A ≺ B iff cl(A) ⊆ int(B).

Construct the Stone space Y dual of A, and consider the closed

equivalence relation E on Y that corresponds to ≺; the space Y /E is

isomorphic to [0, 1].

So, [0, 1] can be represented via a countable Boolean algebra together

with a binary relation on it.
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Yet another procedure is to use regular open sets.

A regular open subset of a space X is an open subset U of X such that

U = int(cl(U)).

Example

(0, 1)∪ (2, 3) is a regular open subset of R, while (−1, 0)∪ (0, 1) is not.
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For any space X , the set RO(X ) of regular open subsets of X is a

complete boolean algebra with respect to the inclusion order

[MacNeille, 1937], [Tarski, 1937].

A ∧ B = A ∩ B;

A ∨ B = int(cl(A ∪ B));

0 = ∅;
1 = X ;

¬A = int(X \ A).
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Let X be a compact Hausdorff space. Consider the well-inside relation ≺
on RO(X ):

A ≺ B ⇐⇒ cl(A) ⊆ B.

Then from (RO(X ),≺) we can construct a Stone dual (Y ,E ), and the

quotient Y /E is homeomorphic to X . (Y is the so-called Gleason cover

of X .)

This construction was considered by de Vries in an algebraic approach to

compactifications [de Vries, 1962].
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The correspondence between compact Hausdorff spaces and pairs (B,≺)

can be turned into a duality.
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Definition

A proximity Boolean algebra is a boolean algebra equipped with a

binary relation ≺ (called proximity) s.t., for all a, b, b1, b2:

1. a′ ≤ a ≺ b ≤ b′ implies a′ ≺ b′;

2. a ≺ 1;

3. (a ≺ b1, a ≺ b2) implies a ≺ b1 ∧ b2;

4. a ≺ b implies a ≤ b;

5. a ≺ b implies that there exists c such that a ≺ c ≺ b.

6. a ≺ b implies ¬b ≺ ¬a;

(≺ can be thought of as a version of the entailment relation that satisfies

weaker axioms.)
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Given a continuous function f : X → Y , I define a relation Sf from P(X )

to P(Y ) by setting A Sf B iff f [cl(A)] ⊆ int(B).

When X = Y and F = id, Sf = ≺.
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Definition

A relation S : A→ B between proximity Boolean algebras is called a

functional compatible subordination if

1. S is a subordination:

1.1 0 S b;

1.2 a S 1;

1.3 if a1 S b and a2 S b, then (a1 ∨ a2) S b;

1.4 if a S b1 and a S b2, then a S (b1 ∧ b2);

1.5 if a′ ≤ a S b ≤ b′, then a′ S b′;

2. S is compatible (with the relations ≺A and ≺B):

a S b ⇐⇒ ∃ a′ ∈ A : a ≺A a′ S b ⇐⇒ ∃b′ ∈ B : a S b′ ≺B b;

3. S is functional:

3.1 if a S 0, then a = 0;

3.2 if b1 ≺B b2, then there is a ∈ A s.t. ¬a S ¬b1 and a S b2.
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ProxBAFS := category of proximity Boolean algebras and functional

compatible subordinations. Composition = composition of relations.

Given relations X
R−→ Y

S−→ Z , their composite S ◦ R : X → Z is defined

by

x (S ◦ R) z ⇐⇒ ∃y ∈ Y s.t. x R y S z .

KHausF := category of compact Hausdorff spaces and continuous

functions.

Theorem

The categories KHausF and ProxBAFS are equivalent.

Equivalence vs duality: a matter of taste: slightly modifying the

functionality axioms one obtains a duality.
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Definition

KHausR := category

� whose objects are compact Hausdorff spaces, and

� whose morphisms from X to Y are the closed relations R ⊆ X × Y

(equivalently, those relations R : X → Y such that the R-image of a

closed subset of X is closed and the R-preimage of a closed subset

of Y is closed).

Composition of morphisms is the usual composition of relations.
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ProxBAS := category of proximity Boolean algebras and compatible

subordinations. Composition = composition of relations.

Main Theorem

KHausR and ProxBAS are equivalent.

(We obtained the previous one as a corollary of this.)
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In ProxBAS there are isomorphic objects that are quite different. They

might even fail to share the same cardinality.

If one wants to avoid this, one can select, for each compact Hausdorff

space, the pair (RO(X ),≺) and all of its structure-preserving-isomorphic

copies.

21



Definition ([de Vries, 1962])

A de Vries algebra is a proximity boolean algebra that is complete and

satisfies

a ̸= 0⇒ ∃b ̸= 0 : b ≺ a.

For every compact Hausdorff space X , (RO(X ),≺) is a de Vries algebra.

For every de Vries algebra A there exists a compact Hausdorff space X

(unique up to homeomorphism) such that A is

structure-preserving-isomorphic to (RO(X ),≺) [de Vries, 1962].

[de Vries, 1962]: KHausF is dual to a category whose objects are de

Vries algebras and whose morphisms are functions satisfying certain

properties. However, composition was not function composition, which is

a major drawback.
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DeVFS := category of de Vries algebras and functional compatible

subordinations (composition = composition of relations).

DeVFS ⊆ ProxBAFS

DeVFS is a full subcategory of ProxBAFS, and its closure under iso is

ProxBAFS.

Theorem

KHausF and DeVFS are equivalent.

Advantage over classical de Vries duality: composition of

morphisms is the usual composition of relations.
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DeVS := category of de Vries algebras and functional compatible

subordinations (composition = composition of relations).

DeVS ⊆ ProxBAS

DeVS is a full subcategory of ProxBAS, and its closure under iso is

ProxBAS.

Theorem

KHausR and DeVS are equivalent.
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KHausF ProxBAFS DeVFS

KHausR ProxBAS DeVS

wide wide

full

wide

full
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There are many similar results where relations were employed as

morphisms. [Scott, 1982], [Larsen, Winskel, 1984], [Hoofman, 1993],

[Vickers, 1993], [Abramsky, Jung, 1994], [Jung, Sünderhauf, 1996],

[Jung, Kegelmann, Moshier, 2001], [Kegelmann, 2002], [Moshier, 2004].

We applied these ideas to de Vries duality.
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Sketch of proof of KHausR ∼= ProxBAS

1. We apply the Karoubi envelope construction (a.k.a. splitting by

idempotents or Cauchy completion) to an extension of Stone duality,

where continuous functions are replaced by closed relations.

2. The equivalence KHausR ∼= ProxBAS is the composite of

2.1 the equivalence between KHausR and the category KRFrmP of

compact regular frames and preframe homomorphisms

[Townsend, 1996], [Jung, Kegelmann, Moshier, 2001], and

2.2 a restriction of an equivalence between the category ContDomOF of

continuous domains and open filter morphisms and the category

Infosys of continuous information systems and Lawson approximable

mappings [Vickers, 1993].

KHausR KRFrmP ProxBAS

ContDomOF Infosys

full full
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To sum up

Taking certain relations (instead of functions) as morphisms between de

Vries algebras solves some issues.

Furthermore, this approach allows to obtain an equivalence/duality for

the category of compact Hausdorff spaces and closed relations between

them.

Thank you.
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