An abstraction of the unit interval with denominators

Marco Abbadini
University of Salerno, Italy

Joint work with V. Marra and L. Spada

LMF, Paris
20 December 2022

Łukasiewicz logic

Łukasiewicz introduced a three-valued logic in the early 20th century. Set of truth values: $\left\{0, \frac{1}{2}, 1\right\}$.

It was then generalized to n-valued (for all finite n) variants. Set of truth values: $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-2}{n}, \frac{n-1}{n}, 1\right\}$.

It was then generalized also to an infinitely many-valued variant Set of truth values: $[0,1]$.

An interpretation of n-valued $\ddagger u k a s i e w i c z$ logic

An interpretation of n-valued Łukasiewicz logic can be given in the framework of Rényi-Ulam games, a variant of the game of Twenty Questions.

In the traditional game without lies, someone thinks of an object and another person should guess it using twenty yes-or-no questions.

In the game with lies, one is allowed to lie up to $n-2$ times.
Case $n=2$: game without lies.

Example: we should guess which letter between A, B and C Pinocchio is thinking about. Pinocchio is allowed to lie once (i.e. $n=3$).

0 : incompatible with at least two answers (thus impossible).
$\frac{1}{2}$: incompatible with exactly one answer.
1: compatible with all answers.

Possible worlds	A	B	C
1	1	1	

Are you thinking about B or C ? "No." $1 \quad \frac{1}{2} \quad \frac{1}{2}$
Are you thinking about C ?
Are you thinking about B ?
Are you thinking about C ?

"No."	1	$\frac{1}{2}$	$\frac{1}{2}$
"Yes."	$\frac{1}{2}$	0	$\frac{1}{2}$
"No."	$\frac{1}{2}$	0	$\frac{1}{2}$
"Yes."	0	0	$\frac{1}{2}$

The letter is C.

Just like the states of knowledge of the game without lies form a Boolean algebra, the states of knowledge of the game with lies form an MV-algebra.

Boolean algebras are the algebras $\langle A, \vee, \neg, 0\rangle$ satisfying all universally quantified equation satisfied by $\{0,1\}$:

$$
\forall x_{1} \ldots \forall x_{n} \tau\left(x_{1}, \ldots, x_{n}\right)=\sigma\left(x_{1}, \ldots, x_{n}\right) .
$$

MV-algebras are the algebras $\langle A, \oplus, \neg, 0\rangle$ satisfying all universally quantified equations satisfied by $[0,1]$, where $x \oplus y=\min \{x+y, 1\}$, and $\neg x=1-x$.

1. $\forall x \neg \neg x$,
2. $\langle A, \oplus, 0\rangle$ is a commutative monoid,
3. $\forall x x \oplus \neg 0=x$,
4. $\forall x \forall y \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.
\oplus is called "strong disjunction".
$x \odot y:=\neg(\neg x \oplus \neg y)$.
Interpretation in $[0,1]: x \odot y=\max \{x+y-1,0\}$.
\odot is called "strong conjunction".
\oplus and \odot are interdefinable.

Possible worlds	A	B	C
1	1	1	

$\begin{array}{llllll}\text { Are you thinking about } B \text { or } C ? & \text { "No." } & 1 & \frac{1}{2} & \frac{1}{2} \\ \text { Are you thinking about } C ? & \text { "Yes." } & \frac{1}{2} & 0 & \frac{1}{2}\end{array}$

$$
\left(\frac{1}{2}, 0, \frac{1}{2}\right)=\left(1, \frac{1}{2}, \frac{1}{2}\right) \odot\left(\frac{1}{2}, \frac{1}{2}, 1\right)
$$

Examples:

- $[0,1]$,
- $[0,1]^{2}$,
- $[0,1]^{\kappa}, \kappa$ a cardinal.
- Any Boolean algebra (set $\oplus:=\vee$).
- $\left\{0, \frac{1}{2}, 1\right\}$,
- $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-2}{n}, \frac{n-1}{n}, 1\right\}, \quad(n \in\{1,2,3, \ldots\})$
- $\left\{0, \frac{1}{2}, 1\right\}^{\{A, B, C\}}$,
- $\mathbb{Q} \cap[0,1]$,
- $C(X,[0,1]):=\{f: X \rightarrow[0,1] \mid f$ cont. $\}$. (X a space)

For Boolean algebras we have a nice representation: Stone representation for Boolean algebras, a.k.a. Stone duality for Boolean algebras [Stone, 1936].

Stone duality drew a connection between syntax and semantics: each formula of classical propositional logic is interpreted as a set of possible worlds, where

- logical "or" \leftrightarrow union of sets of worlds,
- logical "and" \leftrightarrow intersection of sets of worlds,
- logical "negation" \leftrightarrow complementation of set of worlds.

Stone duality

Stone's representation theorem is a duality (= dual categorical equivalence) between the category of Boolean algebras (syntax) and the category of Stone spaces (a.k.a. profinite spaces, or Boolean spaces), i.e. compact Hausdorff spaces with a basis of closed open sets (semantics).

More information (quotient of algebras $A \rightarrow B$) $=$ fewer possible worlds (inclusion of spaces $X_{A} \hookleftarrow X_{B}$).

There is no equally nice representation for all MV-algebras.
So, one looks for representations of subclasses of the class of MV-algebras.

Roughly speaking, one replaces $\{0,1\}$ by $[0,1]$.
Stone spaces $=$ closed subspaces of $\{0,1\}^{\kappa}, \kappa$ a cardinal.
Compact Hausdorff spaces $=$ closed subspaces of $[0,1]^{\kappa}, \kappa$ a cardinal.

Given a Stone space X the associated Boolean algebra is the set of closed open subsets of X, that can be identified with the set

$$
C(X,\{0,1\})
$$

of continuous functions from X to $\{0,1\}$.
Given a compact Hausdorff space X, the set

$$
C(X,[0,1])
$$

of continuous functions from X to $[0,1]$ is an MV-algebra (with operations computed pointwise).

Examples:
If X is a singleton, then $C(X,[0,1]) \cong[0,1]$.
If $X=\left\{x_{1}, \ldots, x_{n}\right\}$, then $C(X,[0,1]) \cong[0,1]^{n}$.

The MV-algebras arising as $C(X,[0,1])$ (for X compact Hausdorff) are precisely those that are:

1. Archimedean (i.e. there are no infinitesimals, which is equivalent to be representable as an algebra of $[0,1]$-valued functions),
2. metrically complete (with respect to the sup metric),
3. divisible.
$\mathbb{Q} \cap[0,1]$ is an MV-algebra that is Archimedean and divisible but not metrically complete.
$\left\{0, \frac{1}{2}, 1\right\}$ is an MV-algebra that is Archimedean, metrically complete, but not divisible.
$\left\{0, \frac{1}{2}, 1\right\}^{\{A, B, C\}}$ is an MV-algebra that is Archimedean, metrically complete, but not divisible.

We want to remove the hypothesis of divisibility, so to represent also MV-algebras such as $\left\{0, \frac{1}{2}, 1\right\}\{A, B, C\}$.
$\left\{0, \frac{1}{2}, 1\right\}^{\{A, B, C\}}$ will be represented by a discrete space with three points (corresponding to A, B, C), where to each point we add the label 2 (corresponding to the denominator of $\frac{1}{2}$).

Removing "divisible" on algebras corresponds to add "denominators" on spaces.

We provide an abstraction of $[0,1]$ that takes into account both the topology and the "denominators" of the elements of $[0,1]$.

We define the denominator $\operatorname{den}(x)$ of each $x \in[0,1]$:

1. for $x=\frac{p}{q}$ a rational number (in its standard form), $\operatorname{den}(x):=q$.
2. for x an irrational number, $\operatorname{den}(x):=0$.

What is an abstraction of $[0,1]$ that takes into account both the topology and the denominator map den: $[0,1] \rightarrow \mathbb{N}$?

Compact Hausdorff spaces $=$ closed subsets of $[0,1]^{\kappa}$.
??? = closed subsets of $[0,1]^{\kappa}$ equipped with "denominator map".

We define a denominator also for elements $(x, y) \in[0,1]^{2}$. $\operatorname{den}(x, y)=\operatorname{lcm}(\operatorname{den}(x), \operatorname{den}(y))$.

For example:
$\operatorname{den}\left(\frac{2}{5}, \frac{3}{5}\right)=5$.
$\operatorname{den}\left(\frac{1}{4}, \frac{1}{3}\right)=12$.
$\operatorname{den}\left(\frac{2}{3}, \frac{\sqrt{2}}{2}\right)=0$.
$\operatorname{den}\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)=0$.

We define a denominator also for elements of $[0,1]^{\kappa}$.

$$
\operatorname{den}\left(\left(x_{i}\right)_{i \in \kappa}\right)=\operatorname{lcm}\left(\left\{\operatorname{den}\left(x_{i}\right) \mid i \in \kappa\right\}\right) .
$$

For example, in $[0,1]^{\omega}$:

$$
\begin{gathered}
\operatorname{den}\left(\left(\frac{1}{4}, \frac{3}{4}, \frac{1}{4}, \frac{3}{4}, \ldots\right)\right)=4 \\
\operatorname{den}\left(\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \ldots\right)\right)=6 \\
\operatorname{den}\left(\left(\frac{\pi}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\right)\right)=0 \\
\operatorname{den}\left(\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots\right)\right)=0 .
\end{gathered}
$$

How do topology and denominators interact in closed subspaces of powers of $[0,1]$?

Definition

An a-normal space (for 'arithmetically normal space') is a compact Hausdorff space X equipped with a function $\zeta: X \rightarrow \mathbb{N}$ s.t.

1. For every $n \in \mathbb{N},\{x \in X \mid \zeta(x)$ divides $n\}$ is closed.
2. For distinct $x, y \in X$, there are disjoint open neighbourhoods U and V of x and y, respectively, s.t., for all $t \in X \backslash(U \cup V), \zeta(t)=0$.

A-normal spaces are the abstraction of the unit interval $[0,1]$ that takes into account both the topology and the denominator function:

Main result

Let X be a compact Hausdorff space and $\zeta: X \rightarrow \mathbb{N}$ a function. The following are equivalent.

1. (X, ζ) is an a-normal space.
2. There are a cardinal κ and a closed $C \subseteq[0,1]^{\kappa}$ such that $(X, \zeta) \cong(C$, den $)$.

Main step needed in the proof: generalization of Urysohn's lemma.

Using a-normal spaces, we represent Archimidean metrically complete MV-algebras.

Let (X, ζ) be an a-normal space.
$\left\{f: X \rightarrow[0,1] \mid f\right.$ cont., $\forall x \in X$ with $\zeta(x) \neq 0$, we have $\left.f(x) \in \frac{1}{\zeta(x)} \mathbb{Z}\right\}$
is an Archimedean metrically complete MV-algebra, and every
Archimedean metrically complete MV-algebra can be obtained in this way.
(In fact, we have a categorical duality between a-normal spaces and Archimedean metrically complete MV-algebras.)

Thank you!

M. Abbadini, V. Marra, L. Spada. Stone-Gelfand duality for metrically complete lattice-ordered groups. Preprint at arXiv:2210.15341, 2022.

