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 Lukasiewicz logic

 Lukasiewicz introduced a three-valued logic in the early 20th century.

Set of truth values: {0, 1
2 , 1}.

It was then generalized to n-valued (for all finite n) variants.

Set of truth values: {0, 1
n ,

2
n , . . . ,

n−2
n , n−1

n , 1}.

It was then generalized also to an infinitely many-valued variant

Set of truth values: [0, 1].
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An interpretation of n-valued  Lukasiewicz logic

An interpretation of n-valued  Lukasiewicz logic can be given in the

framework of Rényi-Ulam games, a variant of the game of Twenty

Questions.

In the traditional game without lies, someone thinks of an object and

another person should guess it using twenty yes-or-no questions.

In the game with lies, one is allowed to lie up to n − 2 times.

Case n = 2: game without lies.
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Example: we should guess which letter between A, B and C Pinocchio is

thinking about. Pinocchio is allowed to lie once (i.e. n = 3).

0: incompatible with at least two answers (thus impossible).

1
2 : incompatible with exactly one answer.

1: compatible with all answers.

Possible worlds A B C

1 1 1

Are you thinking about B or C? “No.” 1 1
2

1
2

Are you thinking about C? “Yes.” 1
2 0 1

2

Are you thinking about B? “No.” 1
2 0 1

2

Are you thinking about C? “Yes.” 0 0 1
2

The letter is C .
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Just like the states of knowledge of the game without lies form a Boolean

algebra, the states of knowledge of the game with lies form an

MV-algebra.
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Boolean algebras are the algebras ⟨A,∨,¬, 0⟩ satisfying all universally

quantified equation satisfied by {0, 1}:

∀x1 . . . ∀xn τ(x1, . . . , xn) = σ(x1, . . . , xn).

MV-algebras are the algebras ⟨A,⊕,¬, 0⟩ satisfying all universally

quantified equations satisfied by [0, 1], where x ⊕ y = min{x + y , 1}, and

¬x = 1− x .

1. ∀x ¬¬x ,

2. ⟨A,⊕, 0⟩ is a commutative monoid,

3. ∀x x ⊕ ¬0 = x ,

4. ∀x ∀y ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .
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⊕ is called “strong disjunction”.

x ⊙ y := ¬(¬x ⊕ ¬y).

Interpretation in [0, 1]: x ⊙ y = max{x + y − 1, 0}.

⊙ is called “strong conjunction”.

⊕ and ⊙ are interdefinable.

Possible worlds A B C

1 1 1

Are you thinking about B or C? “No.” 1 1
2

1
2

Are you thinking about C? “Yes.” 1
2 0 1

2(
1

2
, 0,

1

2

)
=

(
1,

1

2
,

1

2

)
⊙
(

1

2
,

1

2
, 1

)
.
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Examples:

� [0, 1],

� [0, 1]2,

� [0, 1]κ, κ a cardinal.

� Any Boolean algebra (set ⊕ := ∨).

� {0, 1
2 , 1},

� {0, 1
n ,

2
n , . . . ,

n−2
n , n−1

n , 1}, (n ∈ {1, 2, 3, . . . })
� {0, 1

2 , 1}{A,B,C},

� Q ∩ [0, 1],

� C (X , [0, 1]) := {f : X → [0, 1] | f cont.}. (X a space)
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For Boolean algebras we have a nice representation: Stone representation

for Boolean algebras, a.k.a. Stone duality for Boolean algebras [Stone,

1936].

Stone duality drew a connection between syntax and semantics: each

formula of classical propositional logic is interpreted as a set of possible

worlds, where

� logical “or” ↔ union of sets of worlds,

� logical “and” ↔ intersection of sets of worlds,

� logical “negation” ↔ complementation of set of worlds.
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Stone duality

Stone’s representation theorem is a duality (= dual categorical

equivalence) between the category of Boolean algebras (syntax) and the

category of Stone spaces (a.k.a. profinite spaces, or Boolean spaces), i.e.

compact Hausdorff spaces with a basis of closed open sets (semantics).

More information (quotient of algebras A ↠ B)

=

fewer possible worlds (inclusion of spaces XA ←↩ XB).
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There is no equally nice representation for all MV-algebras.

So, one looks for representations of subclasses of the class of

MV-algebras.
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Roughly speaking, one replaces {0, 1} by [0, 1].

Stone spaces = closed subspaces of {0, 1}κ, κ a cardinal.

Compact Hausdorff spaces = closed subspaces of [0, 1]κ, κ a cardinal.
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Given a Stone space X the associated Boolean algebra is the set of

closed open subsets of X , that can be identified with the set

C (X , {0, 1})

of continuous functions from X to {0, 1}.

Given a compact Hausdorff space X , the set

C (X , [0, 1])

of continuous functions from X to [0, 1] is an MV-algebra (with

operations computed pointwise).

Examples:

If X is a singleton, then C (X , [0, 1]) ∼= [0, 1].

If X = {x1, . . . , xn}, then C (X , [0, 1]) ∼= [0, 1]n.
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The MV-algebras arising as C (X , [0, 1]) (for X compact Hausdorff) are

precisely those that are:

1. Archimedean (i.e. there are no infinitesimals, which is equivalent to

be representable as an algebra of [0, 1]-valued functions),

2. metrically complete (with respect to the sup metric),

3. divisible.

Q ∩ [0, 1] is an MV-algebra that is Archimedean and divisible but not

metrically complete.

{0, 1
2 , 1} is an MV-algebra that is Archimedean, metrically complete, but

not divisible.

{0, 1
2 , 1}{A,B,C} is an MV-algebra that is Archimedean, metrically

complete, but not divisible.
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We want to remove the hypothesis of divisibility, so to represent also

MV-algebras such as {0, 1
2 , 1}{A,B,C}.

{0, 1
2 , 1}{A,B,C} will be represented by a discrete space with three points

(corresponding to A, B, C ), where to each point we add the label 2

(corresponding to the denominator of 1
2 ).

Removing “divisible” on algebras corresponds to add “denominators” on

spaces.
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We provide an abstraction of [0, 1] that takes into account both the

topology and the “denominators” of the elements of [0, 1].
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We define the denominator den(x) of each x ∈ [0, 1]:

1. for x = p
q a rational number (in its standard form), den(x) := q.

2. for x an irrational number, den(x) := 0.

What is an abstraction of [0, 1] that takes into account both the topology

and the denominator map den : [0, 1]→ N?
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Compact Hausdorff spaces = closed subsets of [0, 1]κ.

??? = closed subsets of [0, 1]κ equipped with “denominator map”.
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We define a denominator also for elements (x , y) ∈ [0, 1]2.

den(x , y) = lcm(den(x),den(y)).

For example:

den( 2
5 ,

3
5 ) = 5.

den( 1
4 ,

1
3 ) = 12.

den( 2
3 ,

√
2
2 ) = 0.

den(π
4 ,

√
2
2 ) = 0.
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We define a denominator also for elements of [0, 1]κ.

den((xi )i∈κ) = lcm({den(xi ) | i ∈ κ}).

For example, in [0, 1]ω:

den((
1

4
,

3

4
,

1

4
,

3

4
, . . . )) = 4.

den((
1

3
,

1

2
,

1

3
,

1

2
, . . . )) = 6.

den((
π

4
,

1

2
,

1

2
,

1

2
,

1

2
, . . . )) = 0.

den((
1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . . )) = 0.
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How do topology and denominators interact in closed subspaces of

powers of [0, 1]?
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Definition

An a-normal space (for ‘arithmetically normal space’) is a compact

Hausdorff space X equipped with a function ζ : X → N s.t.

1. For every n ∈ N, {x ∈ X | ζ(x) divides n} is closed.

2. For distinct x , y ∈ X , there are disjoint open neighbourhoods U and

V of x and y , respectively, s.t., for all t ∈ X \ (U ∪ V ), ζ(t) = 0.

X
U V

• x • y

ζ = 0
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A-normal spaces are the abstraction of the unit interval [0, 1] that takes

into account both the topology and the denominator function:

Main result

Let X be a compact Hausdorff space and ζ : X → N a function. The

following are equivalent.

1. (X , ζ) is an a-normal space.

2. There are a cardinal κ and a closed C ⊆ [0, 1]κ such that

(X , ζ) ∼= (C ,den).

Main step needed in the proof: generalization of Urysohn’s lemma.
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Using a-normal spaces, we represent Archimidean metrically complete

MV-algebras.
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Let (X , ζ) be an a-normal space.

{f : X → [0, 1] | f cont.,∀x ∈ X with ζ(x) ̸= 0, we have f (x) ∈ 1

ζ(x)
Z}

is an Archimedean metrically complete MV-algebra, and every

Archimedean metrically complete MV-algebra can be obtained in this way.

(In fact, we have a categorical duality between a-normal spaces and

Archimedean metrically complete MV-algebras.)

Thank you!

M. Abbadini, V. Marra, L. Spada. Stone-Gelfand duality for metrically

complete lattice-ordered groups. Preprint at arXiv:2210.15341, 2022.
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