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Abelian groups and commutative monoids

Monoid: (xy)z = x(yz), x1 = 1x = x . Commutativity: xy = yx .

Cancellation property:

xz = yz ⇒ x = y ; zx = zy ⇒ x = y .

Fact

Every cancellative commutative monoid M can be embedded (as a

monoid) in an Abelian group G .

Example: the additive monoid N can be embedded in the additive group

Z.

Construction: (M ×M)/∼. . .
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Abelian groups and commutative monoids

Is this the only possible embedding?

� N ↪→ Z,

� N ↪→ Q,

� N ↪→ R,

In all these cases, the subgroup generated by the image of the embedding

is isomorphic to Z.
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Abelian groups and commutative monoids

Fact

For each cancellative commutative monoid M, there is a unique (up to

isomorphism) embedding f : M ↪→ G of M into an Abelian group G

whose image generates G (as a group).

Uniqueness up to isomorphism means:

M G1

G2

f1

f2
iso

For which other algebraic structures do we have this uniqueness? Is there

a general technique to prove uniqueness?
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Groups and monoids

For arbitrary (i.e. non-necessarily commutative) monoids/groups, we do

not have this uniqueness of embeddings.

For example, the monoid {a, b, c}∗ of words on three letters has at least

two non-isomorphic embeddings into groups whose images generate the

groups.

� into the free group Free({a, b, c}) on three elements (a 7→ a, b 7→ b,

c 7→ c) and

� into the free group Free({a, b}) on two elements (a 7→ a, b 7→ b,

c 7→ ab−1a).
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Rational vector spaces and Abelian groups

Fact

Every torsion-free Abelian group G can be embedded (as a group) into

a rational vector space V .

(Example: Z ↪→ Q.)

I have seen proofs using localization, tensor product, free abelian

groups. . .

Are all these constructions the same? Yes.

Fact

For each torsion-free Abelian group G , there is (up to isomorphism) a

unique embedding (of Abelian groups) f : G ↪→ V into a rational

vector space whose image generates V (as a rational vector space).
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Complex and real vector spaces

Fact

Any real vector space can be embedded into a complex vector space.

However, this embedding is not unique: For example: R× R can be

embedded (as a real vector space) into C× C or into C in

non-isomorphic ways.

6



What makes the uniqueness?

What makes the uniqueness?
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What makes the uniqueness?

Recall

For each cancellative commutative monoid M, there is (up to

isomorphism) a unique embedding f : M ↪→ G of M into an Abelian

group G whose image generates (as a group) G .

Sketch of proof of uniqueness. Suppose you have two injective monoid

homomorphisms with generating images.

M G

H

i

f

For ease of notation, we assume i to be the inclusion of a submonoid M

of G (M should then generate the group G ).

To be found: isomorphism ψ : G → H that extends f .
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What makes the uniqueness?

It is not difficult to prove that every z ∈ G is a difference z = x − y of

elements of M. Then, set ψ(z) := f (x)− f (y) ∈ H.

Is this a well-defined function?

Suppose x − y = x ′ − y ′ and let us prove f (x)− f (y) = f (x ′)− f (y ′).

x − y = x ′ − y ′ ⇐⇒ x + y ′ = x ′ + y

=⇒ f (x + y ′) = f (x ′ + y)

⇐⇒ f (x) + f (y ′) = f (x ′) + f (y)

⇐⇒ f (x)− f (y) = f (x ′)− f (y ′).

Further, one proves that ψ is a group isomorphism that extends f .
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What makes the uniqueness?

Key fact used

For every Abelian group G and all x , y , x ′, y ′ ∈ G ,

x − y = x ′ − y ′ ⇐⇒ x + y ′ = x ′ + y .

Fact

Any equation between two terms in the language of Abelian groups is

equivalent to an equation in the language of monoids.

Example: −x + y − z = x ⇐⇒ y = x + x + z .
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What makes the uniqueness?

Fact

Every equation in the language of Q-vector spaces is equivalent to an

equation in the language of Abelian groups.

Example

1

2
x + y =

2

3
z

is equivalent to

3x + 6y = 4z .

Claim: this is related to the uniqueness of the embedding of Abelian

groups into Q-vector spaces.

11



What makes the uniqueness?

The analogous statement for arbitrary groups (not necessarily Abelian) is

false.

Example: x = yz−1y cannot be expressed via an equation in the

language of monoids.

Claim: this is related to the non-uniqueness of the embedding of

monoids into groups.
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What makes the uniqueness?

The equation x = iy (in the language of complex vector spaces) is not

equivalent to an equation in the language of real vector spaces.

Claim: this is related to the non-uniqueness of the embedding of real

vector spaces into complex vector spaces.
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Main result



Very informal statement of main result:

Unique embeddability of A into B ⇐⇒ every equation in B can be

expressed in A.
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Definition

An algebraic language L consists of a set (whose elements are called

function symbols), and, for each function symbol τ , of a natural

number (called the arity of τ).

E.g.: L = {·, (−)−1, 1}; arity of · is 2, arity of (−)−1 is 1, arity of 1 is 0.

Definition

An algebra for an algebraic language L consists of a set A and, for each

function symbol τ ∈ L, of a function JτKA : An → A (called

interpretation in A of τ), where n is the arity of τ .

E.g.: any group is an algebra for the language {·, (−)−1, 1}.
· : A2 → A.

(−)−1 : A → A.

1 : {∗} → A.
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Definition

An SP-class is a class V of algebras for a common algebraic language L
that is closed under subalgebras and products, i.e.:

1. (Subalgebras) For every A ∈ V, every subalgebra of A (i.e. a subset

of A closed under all interpretations in A of the function symbols),

B ∈ V.
2. (Products) For every family (Ai )i∈I of algebras in V, the product

algebra
∏

i∈I Ai (i.e. the cartesian product
∏

i∈I Ai equipped with

the component-wise interpretation of the function symbols) belongs

to V.

Example

The class of groups, wrt the language {·, (−)−1, 1}, is an SP-class.

Indeed, for any group, any subset that is closed under multiplication,

inverse and contains the identity element is also a group; moreover,

product of groups is a group.
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Examples of SP-classes

Groups, Abelian groups, monoids, commutative monoids, cancellative

commutative monoids, semigroups, torsion-free Abelian groups,

torsion-free groups.

Rings, commutative rings, rngs, commutative rngs, R-vector spaces,
K-vector spaces (for a fixed field K), R-modules (for a fixed ring R),

algebras over a fixed field K, Lie-algebras.

Boolean algebras, lattices, distributive lattices, bounded distributive

lattices, Heyting algebras, semilattices.

Sets.

Non-examples

Fields (the product of two fields is not a field), integral domains (the

product of two integral domains is not an integral domain).
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Setting

� An algebraic language L+ and a sublanguage L− ⊆ L+.

� Two SP-classes V+ and V− for L+ and L−, respectively.

We assume “V+ ⊆ V−” i.e.: taking A ∈ V+ and forgetting the

interpretation of the operations in L+ \L−, we obtain an algebra in V−.

For example:

1. V+ = {Abelian groups}, V− = {cancellative commutative monoids}.
2. V+ = {Abelian groups}, V− = {commutative monoids}.
3. V+ = {groups}, V− = {monoids}.
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Definition

Unique embeddability property :=

Given A ∈ V−, B,C ∈ V+, and injective V−-homomorpisms f : A ↪→ B

and g : A ↪→ C whose images V+-generate B and C respectively, there

is a V+-isomorphism h : B → C making the following diagram commute.

A B

C

f

g
h

We have the unique embeddability property for V+ = {Abelian groups}
and V− = {commutative monoids}.

We do not have the unique embeddability property for V+ = {groups}
and V− = {monoids}.

19



Definition

Expressibility property :=

every equation

σ(x1, . . . , xn) = ρ(x1, . . . , xn)

in L+ is equivalent to a system of equations in L−.

I.e.: for each pair (σ(x1, . . . , xn), ρ(x1, . . . , xn)) of terms in L+, there is

a finite set of pairs (αi (x1, . . . , xn), βi (x1, . . . , xn))i of terms in L− s.t.,

for all A ∈ V+ and x1, . . . , xn ∈ A,

σ(x1, . . . , xn) = ρ(x1, . . . , xn) ⇔ ∀i αi (x1, . . . , xn) = βi (x1, . . . , xn).

For Abelian groups and commutative monoids we have the expressibility

property

For groups and monoids we do not have the expressibility property.

20



Main theorem

Unique embeddability property ⇐⇒ expressibility property.

How to use it:

1. Prove that equations in the richer language can be expressed in the

poorer language (e.g.: x − y = x ′ − y ′ iff x + y ′ = y + x ′). Deduce

the unique embeddability property.

2. If one suspects that a given equation (such as x = yz−1y or x = iy)

in the richer language cannot be expressed in the poorer language,

the equation can guide to two non-isomorphic embeddings that

disprove the unique embeddability property. In turn, these two

non-isomorphic embeddings can be used to prove that the given

equation is in fact not expressible in the poorer language.

Thank you!
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