Unique embeddability property

Marco Abbadini. University of Salerno, Italy
Work in progress with Clint Van Alten
University of Witwatersrand, March 30, 2023

Abelian groups and commutative monoids

Monoid: $(x y) z=x(y z), x 1=1 x=x$. Commutativity: $x y=y x$.
Cancellation property:

$$
x z=y z \Rightarrow x=y ; \quad z x=z y \Rightarrow x=y .
$$

Fact

Every cancellative commutative monoid M can be embedded (as a monoid) in an Abelian group G.

Example: the additive monoid \mathbb{N} can be embedded in the additive group \mathbb{Z}.

Construction: $(M \times M) / \sim \ldots$

Abelian groups and commutative monoids

Is this the only possible embedding?

- $\mathbb{N} \hookrightarrow \mathbb{Z}$,
- $\mathbb{N} \hookrightarrow \mathbb{Q}$,
- $\mathbb{N} \hookrightarrow \mathbb{R}$,

In all these cases, the subgroup generated by the image of the embedding is isomorphic to \mathbb{Z}.

Abelian groups and commutative monoids

Fact

For each cancellative commutative monoid M, there is a unique (up to isomorphism) embedding $f: M \hookrightarrow G$ of M into an Abelian group G whose image generates G (as a group).

Uniqueness up to isomorphism means:

For which other algebraic structures do we have this uniqueness? Is there a general technique to prove uniqueness?

Groups and monoids

For arbitrary (i.e. non-necessarily commutative) monoids/groups, we do not have this uniqueness of embeddings.

For example, the monoid $\{a, b, c\}^{*}$ of words on three letters has at least two non-isomorphic embeddings into groups whose images generate the groups.

- into the free group Free $(\{a, b, c\})$ on three elements $(a \mapsto a, b \mapsto b$, $c \mapsto c)$ and
- into the free group Free $(\{a, b\})$ on two elements $(a \mapsto a, b \mapsto b$, $\left.c \mapsto a b^{-1} a\right)$.

Rational vector spaces and Abelian groups

Fact

Every torsion-free Abelian group G can be embedded (as a group) into a rational vector space V.
(Example: $\mathbb{Z} \hookrightarrow \mathbb{Q}$.)
I have seen proofs using localization, tensor product, free abelian groups...

Are all these constructions the same? Yes.

Fact

For each torsion-free Abelian group G, there is (up to isomorphism) a unique embedding (of Abelian groups) $f: G \hookrightarrow V$ into a rational vector space whose image generates V (as a rational vector space).

Complex and real vector spaces

Fact

Any real vector space can be embedded into a complex vector space.
However, this embedding is not unique: For example: $\mathbb{R} \times \mathbb{R}$ can be embedded (as a real vector space) into $\mathbb{C} \times \mathbb{C}$ or into \mathbb{C} in non-isomorphic ways.

What makes the uniqueness?

What makes the uniqueness?

What makes the uniqueness?

Recall

For each cancellative commutative monoid M, there is (up to isomorphism) a unique embedding $f: M \hookrightarrow G$ of M into an Abelian group G whose image generates (as a group) G.

Sketch of proof of uniqueness. Suppose you have two injective monoid homomorphisms with generating images.

For ease of notation, we assume i to be the inclusion of a submonoid M of G (M should then generate the group G).

To be found: isomorphism $\psi: G \rightarrow H$ that extends f.

What makes the uniqueness?

It is not difficult to prove that every $z \in G$ is a difference $z=x-y$ of elements of M. Then, set $\psi(z):=f(x)-f(y) \in H$.

Is this a well-defined function?
Suppose $x-y=x^{\prime}-y^{\prime}$ and let us prove $f(x)-f(y)=f\left(x^{\prime}\right)-f\left(y^{\prime}\right)$.

$$
\begin{aligned}
x-y=x^{\prime}-y^{\prime} & \Longleftrightarrow x+y^{\prime}=x^{\prime}+y \\
& \Longleftrightarrow f\left(x+y^{\prime}\right)=f\left(x^{\prime}+y\right) \\
& \Longleftrightarrow f(x)+f\left(y^{\prime}\right)=f\left(x^{\prime}\right)+f(y) \\
& \Longleftrightarrow f(x)-f(y)=f\left(x^{\prime}\right)-f\left(y^{\prime}\right)
\end{aligned}
$$

Further, one proves that ψ is a group isomorphism that extends f.

What makes the uniqueness?

Key fact used

For every Abelian group G and all $x, y, x^{\prime}, y^{\prime} \in G$,

$$
x-y=x^{\prime}-y^{\prime} \Longleftrightarrow x+y^{\prime}=x^{\prime}+y .
$$

Fact

Any equation between two terms in the language of Abelian groups is equivalent to an equation in the language of monoids.

Example: $-x+y-z=x \Longleftrightarrow y=x+x+z$.

What makes the uniqueness?

Fact

Every equation in the language of \mathbb{Q}-vector spaces is equivalent to an equation in the language of Abelian groups.

Example

$$
\frac{1}{2} x+y=\frac{2}{3} z
$$

is equivalent to

$$
3 x+6 y=4 z
$$

Claim: this is related to the uniqueness of the embedding of Abelian groups into \mathbb{Q}-vector spaces.

What makes the uniqueness?

The analogous statement for arbitrary groups (not necessarily Abelian) is false.

Example: $x=y z^{-1} y$ cannot be expressed via an equation in the language of monoids.

Claim: this is related to the non-uniqueness of the embedding of monoids into groups.

What makes the uniqueness?

The equation $x=i y$ (in the language of complex vector spaces) is not equivalent to an equation in the language of real vector spaces.

Claim: this is related to the non-uniqueness of the embedding of real vector spaces into complex vector spaces.

Main result

Very informal statement of main result:
Unique embeddability of A into $B \Longleftrightarrow$ every equation in B can be expressed in A.

Definition

An algebraic language \mathcal{L} consists of a set (whose elements are called function symbols), and, for each function symbol τ, of a natural number (called the arity of τ).
E.g.: $\mathcal{L}=\left\{\cdot,(-)^{-1}, 1\right\}$; arity of \cdot is 2 , arity of $(-)^{-1}$ is 1 , arity of 1 is 0 .

Definition

An algebra for an algebraic language \mathcal{L} consists of a set A and, for each function symbol $\tau \in \mathcal{L}$, of a function $\llbracket \tau \rrbracket^{A}: A^{n} \rightarrow A$ (called interpretation in A of τ), where n is the arity of τ.
E.g.: any group is an algebra for the language $\left\{\cdot,(-)^{-1}, 1\right\}$.
$\because A^{2} \rightarrow A$.
$(-)^{-1}: A \rightarrow A$.
1: $\{*\} \rightarrow A$.

Definition

An SP-class is a class \mathcal{V} of algebras for a common algebraic language \mathcal{L} that is closed under subalgebras and products, i.e.:

1. (Subalgebras) For every $A \in \mathcal{V}$, every subalgebra of A (i.e. a subset of A closed under all interpretations in A of the function symbols), $B \in \mathcal{V}$.
2. (Products) For every family $\left(A_{i}\right)_{i \in I}$ of algebras in \mathcal{V}, the product algebra $\prod_{i \in I} A_{i}$ (i.e. the cartesian product $\prod_{i \in I} A_{i}$ equipped with the component-wise interpretation of the function symbols) belongs to \mathcal{V}.

Example

The class of groups, wrt the language $\left\{\cdot,(-)^{-1}, 1\right\}$, is an SP-class. Indeed, for any group, any subset that is closed under multiplication, inverse and contains the identity element is also a group; moreover, product of groups is a group.

Examples of SP-classes

Groups, Abelian groups, monoids, commutative monoids, cancellative commutative monoids, semigroups, torsion-free Abelian groups, torsion-free groups.

Rings, commutative rings, rngs, commutative rngs, \mathbb{R}-vector spaces, \mathbb{K}-vector spaces (for a fixed field \mathbb{K}), R-modules (for a fixed ring R), algebras over a fixed field \mathbb{K}, Lie-algebras.

Boolean algebras, lattices, distributive lattices, bounded distributive lattices, Heyting algebras, semilattices.

Sets.

Non-examples

Fields (the product of two fields is not a field), integral domains (the product of two integral domains is not an integral domain).

Setting

- An algebraic language \mathcal{L}_{+}and a sublanguage $\mathcal{L}_{-} \subseteq \mathcal{L}_{+}$.
- Two SP-classes \mathcal{V}_{+}and \mathcal{V}_{-}for \mathcal{L}_{+}and \mathcal{L}_{-}, respectively.

We assume " $\mathcal{V}_{+} \subseteq \mathcal{V}_{-}$" i.e.: taking $A \in \mathcal{V}_{+}$and forgetting the interpretation of the operations in $\mathcal{L}_{+} \backslash \mathcal{L}_{-}$, we obtain an algebra in \mathcal{V}_{-}.

For example:

1. $\mathcal{V}_{+}=\{$Abelian groups $\}, \mathcal{V}_{-}=\{$cancellative commutative monoids $\}$.
2. $\mathcal{V}_{+}=\{$Abelian groups $\}, \mathcal{V}_{-}=\{$commutative monoids $\}$.
3. $\mathcal{V}_{+}=\{$groups $\}, \mathcal{V}_{-}=\{$monoids $\}$.

Definition

Unique embeddability property :=
Given $A \in \mathcal{V}_{-}, B, C \in \mathcal{V}_{+}$, and injective \mathcal{V}_{-}-homomorpisms $f: A \hookrightarrow B$ and $g: A \hookrightarrow C$ whose images \mathcal{V}_{+}-generate B and C respectively, there is a \mathcal{V}_{+}-isomorphism $h: B \rightarrow C$ making the following diagram commute.

We have the unique embeddability property for $\mathcal{V}_{+}=\{$Abelian groups $\}$ and $\mathcal{V}_{-}=\{$commutative monoids $\}$.

We do not have the unique embeddability property for $\mathcal{V}_{+}=\{$groups $\}$ and $\mathcal{V}_{-}=\{$monoids $\}$.

Definition

Expressibility property :=

 every equation$$
\sigma\left(x_{1}, \ldots, x_{n}\right)=\rho\left(x_{1}, \ldots, x_{n}\right)
$$

in \mathcal{L}_{+}is equivalent to a system of equations in \mathcal{L}_{-}.
l.e.: for each pair $\left(\sigma\left(x_{1}, \ldots, x_{n}\right), \rho\left(x_{1}, \ldots, x_{n}\right)\right)$ of terms in \mathcal{L}_{+}, there is a finite set of pairs $\left(\alpha_{i}\left(x_{1}, \ldots, x_{n}\right), \beta_{i}\left(x_{1}, \ldots, x_{n}\right)\right)_{i}$ of terms in \mathcal{L}_{-}s.t., for all $A \in \mathcal{V}_{+}$and $x_{1}, \ldots, x_{n} \in A$,

$$
\sigma\left(x_{1}, \ldots, x_{n}\right)=\rho\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \forall i \alpha_{i}\left(x_{1}, \ldots, x_{n}\right)=\beta_{i}\left(x_{1}, \ldots, x_{n}\right) .
$$

For Abelian groups and commutative monoids we have the expressibility property

For groups and monoids we do not have the expressibility property.

Main theorem

Unique embeddability property \Longleftrightarrow expressibility property.
How to use it:

1. Prove that equations in the richer language can be expressed in the poorer language (e.g.: $x-y=x^{\prime}-y^{\prime}$ iff $x+y^{\prime}=y+x^{\prime}$). Deduce the unique embeddability property.
2. If one suspects that a given equation (such as $x=y z^{-1} y$ or $x=i y$) in the richer language cannot be expressed in the poorer language, the equation can guide to two non-isomorphic embeddings that disprove the unique embeddability property. In turn, these two non-isomorphic embeddings can be used to prove that the given equation is in fact not expressible in the poorer language.

Thank you!

