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 Lukasiewicz logic

 Lukasiewicz logic ( Lukasiewicz, 1920,  Lukasiewicz, Tarski, 1930):

[0, 1] as the set of truth values.
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MV-algebras

Algebraic semantics of classical propositional logic = Boolean algebras.

Algebraic semantics of  Lukasiewicz logic = MV-algebras (Chang, 1958).

Consider [0, 1] with the operations:

� x ⊕ y := min{x + y , 1}.

Example: 0.3 ⊕ 0.2 = 0.5 but 0.7 ⊕ 0.8 = 1.

� ¬x := 1 − x .

Example: ¬0.3 = 0.7.

� 0 as a constant.
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MV-algebras

Definition

An MV-algebra ⟨A;⊕,¬, 0⟩ is a homomorphic image of a subalgebra of

a power of ⟨[0, 1];⊕,¬, 0⟩:

{MV-algebras} = HSP(⟨[0, 1];⊕,¬, 0⟩)

Equivalently, an MV-algebra is an algebra ⟨A;⊕,¬, 0⟩ satisfying all

equations holding in [0, 1].

Theorem (Chang, 1959)

MV-algebras can be axiomatized as follows:

1. ⟨A;⊕, 0⟩ is a commutative monoid;

2. ¬¬x = x ;

3. x ⊕ ¬0 = ¬0;

4. ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x .
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Examples of MV-algebras

Examples of MV-algebras.

� ⟨[0, 1],⊕,¬, 0⟩ is an MV-algebra.

� For every n ≥ 1:

 Ln :=

{
i

n
| i ∈ {0, . . . , n}

}
⊆ [0, 1].

For example:  L2 = {0, 1
2 , 1}.

� Any Boolean algebra is an MV-algebra: set ⊕ = ∨.

� For any topological space X (e.g. an interval [a, b] ⊆ R), the set of

continuous functions from X to [0, 1] is an MV-algebra.
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Derived MV-terms

One can then term-define:

� 1 := ¬0.

� x ⊙ y := ¬(¬x ⊕ ¬y).

In [0, 1]: x ⊙ y = max{x + y − 1, 0}.

(Example: 0.7 ⊙ 0.8 = 0.5 but 0.3 ⊙ 0.2 = 0.)

� x ∨ y := (x ⊙ ¬y) ⊕ y = (y ⊙ ¬x) ⊕ x .

In [0, 1]: x ∨ y = max{x , y}.

� x ∧ y := (x ⊕ ¬y) ⊙ y = (y ⊕ ¬x) ⊙ x .

In [0, 1]: x ∧ y = min{x , y}.

If A is an MV-algebra, then ⟨A;∨,∧, 0, 1⟩ is a bounded distributive

lattice.
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Abelian ℓ-groups

Definition

An Abelian lattice-ordered group (or Abelian ℓ-group, for short) is an

Abelian group G equipped with a lattice order s.t., for all x , y , z ∈ G,

x ≤ y implies x + z ≤ y + z . (⋆)
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Examples of Abelian ℓ-groups

Examples:

1. R, with the sum.

2. If X is a topological space, then the set C (X ) of continuous

functions from X to R is an Abelian ℓ-group.
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MV-algebras as unit intervals

Given an Abelian ℓ-group G and an element 1 ∈ G that is positive (i.e.

1 ≥ 0), the set

Γ(G, 1) := {x ∈ G | 0 ≤ x ≤ 1}

is an MV-algebra with

� x ⊕ y := (x + y) ∧ 1,

� ¬x := 1 − x .

� 0 the identity element of G.

Theorem (Mundici, 1986)

Every MV-algebra arises in this way.

For example: [0, 1] = Γ(R, 1).
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Mundici’s equivalence

Definition

A strong unit of an Abelian ℓ-group G is a positive element 1 ∈ G s.t.

for all x ∈ G there is n ∈ N>0 s.t.

(−1) + · · · + (−1)︸ ︷︷ ︸
n times

≤ x ≤ 1 + · · · + 1︸ ︷︷ ︸
n times

.

Theorem (Mundici, 1986)

The categories

1. of Abelian ℓ-groups with strong unit and unit-preserving

homomorphisms, and

2. of MV-algebras and homomorphisms

are equivalent.
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Positive MV-algebras



Bounded distributive lattices as subreducts

Relationship between bounded distributive lattices and Boolean algebras?

Bounded distr. lattices = {∨,∧, 0, 1}-subreducts of Boolean algebras.

∨, ∧, 0, 1 are order-preserving, and they term-generate all

order-preserving Boolean terms.

Bounded distributive lattices = positive subreducts of Boolean algebras.
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Positive MV-algebras

Definition

Positive MV-algebras := {⊕,⊙,∨,∧, 0, 1}-subreducts of MV-algebras.

⊕, ⊙, ∨, ∧, 0, 1 are order-preserving in each coordinate. We leave out ¬,

which is not order-preserving.

Theorem (Cintula, Kroupa, 2013)

⊕, ⊙, ∨, ∧, 0, 1 generate all order-preserving terms of MV-algebras.
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Positive MV-algebras

Bounded distributive lattices = positive subreducts of Boolean algebras.

Positive MV-algebras = positive subreducts of MV-algebras.

Positive MV-algebras

MV-algebras
=

Bounded distributive lattices

Boolean algebras
.

MV-algebras = many-valued version of Boolean algebras.

Positive MV-algebras = many-valued version of bounded distrib. lattices.
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Examples of positive MV-algebras

Examples of positive MV-algebras:

1. Every MV-algebra, such as [0, 1], or  Ln.

2. Every bounded distributive lattice (set ⊕ := ∨ and ⊙ := ∧).

3. Given an ordered topological space X (e.g. an interval [a, b] ⊆ R),

the set of continuous order-preserving functions from X to [0, 1] is a

positive MV-algebra.
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Examples of positive MV-algebras

Positive (subdirect) subreducts A ≤  L2 ×  L2:

1. Full product:  L2 ×  L2.

2. Diagonal: {(a, a) | a ∈  L2} = {(0, 0), ( 1
2 ,

1
2 ), (1, 1)}.

3. Order-preserving functions: {(a1, a2) ∈  L2 ×  L2 | a1 ≤ a2} =

{(0, 0), (0, 1
2 ), (0, 1), ( 1

2 ,
1
2 ), ( 1

2 , 1), (1, 1)}.

4. Ordinal sum: {(a1, a2) ∈  L2 ×  L2 | a1 = 0 or a2 = 1} =

{(0, 0), (0, 1
2 ), (0, 1), ( 1

2 , 1), (1, 1)}.

5. Those obtained from 3. and 4. by swapping the two coordinates.
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Sketch of main results

Main results:

1. Finite axiomatization.

2. Positive MV-algebras = unit intervals of certain lattice-ordered

monoids.
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Finite axiomatization of positive

MV-algebras



Axiomatization of positive MV-algebras

Positive MV-algebras cannot be axiomatized by equations (they are not

closed under homomorphic images).

Positive MV-algebras form a quasi-variety (generated by [0, 1]).
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Axiomatization of positive MV-algebras

Theorem [A., Jipsen, Kroupa, Vannucci, 2022]

Positive MV-algebras are axiomatized by:

1. ⟨A;⊕, 0⟩ and ⟨A;⊙, 1⟩ are commutative monoids;

2. ⟨A;∨,∧⟩ is a distributive lattice;

3. Both ⊕ and ⊙ distribute over both ∨ and ∧;

4. (x ⊕ y) ⊙ ((x ⊙ y) ⊕ z) = (x ⊙ (y ⊕ z)) ⊕ (y ⊙ z);

5. (x ⊙ y) ⊕ z = ((x ⊕ y) ⊙ ((x ⊙ y) ⊕ z)) ∨ z ;

6. (x ⊕ y) ⊙ z = ((x ⊕ y) ⊙ ((x ⊙ y) ⊕ z)) ∧ z ;

7. If x ⊕ z = y ⊕ z and x ⊙ z = y ⊙ z , then x = y .

In [0, 1], both sides of (4) equal min{max{x + y + z − 1, 0}, 1}.

Finitely many quasi-equations.
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Equivalence with certain

lattice-ordered monoids



Unit intervals

MV-algebras = intervals of Abelian ℓ-groups.

Positive MV-algebras = intervals of certain lattice-ordered monoids.
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Definition

A commutative distributive ℓ-monoid is a commutative monoid

equipped with a distributive lattice-order s.t. + distributes over ∨ and

∧, i.e.

x + (y ∨ z) = (x + y) ∨ (x + z),

x + (y ∧ z) = (x + y) ∧ (x + z).

A commutative distributive ℓ-monoid is said to be cancellative if

x + z = y + z implies x = y .
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Examples of cancellative commutative distributive ℓ-monoids:

� R.

� Every Abelian ℓ-group.

� Given an ordered topological space X (such as an interval

[a, b] ⊆ R), the set of continuous order-preserving functions from X

to R.
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Lattice-ordered monoids

Given a cancellative commutative distributive ℓ-monoid M and a

positive invertible element 1 ∈ M, the set

Γ(M, 1) := {x ∈ M | 0 ≤ x ≤ 1}

is a positive MV-algebra, with

� x ⊕ y := (x + y) ∧ 1;

� x ⊙ y := (x + y − 1) ∨ 0;

� ∨, ∧, 0, 1 as in M.

Theorem (A., Jipsen, Kroupa, Vannucci, 2022)

Every positive MV-algebra arises in this way.
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Examples

Examples:

� [0, 1] ∼= Γ(R, 1).

� {0, 1} ∼= Γ(Z, 1).

� The three-element bounded distributive lattice, as a positive

MV-algebra (set ⊕ := ∨ and ⊙ := ∧), is isomorphic to

Γ({(a, b) ∈ Z× Z | a ≤ b}, (1, 1)) = {(0, 0) < (0, 1) < (1, 1)}.
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Equivalence à la Mundici for positive MV-algebras

Definition

A strong unit of a (cancellative) commutative distributive ℓ-monoid M

is a positive invertible element 1 ∈ M s.t., for every x ∈ M, there is

n ∈ N>0 s.t.

(−1) + · · · + (−1)︸ ︷︷ ︸
n times

≤ x ≤ 1 + · · · + 1︸ ︷︷ ︸
n times

.

Theorem (A., Jipsen, Kroupa, Vannucci, 2022)

The categories

1. of cancellative commutative distributive ℓ-monoids with strong unit

and unit-preserving homomorphisms, and

2. of positive MV-algebras and homomorphisms

are equivalent.
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Beyond cancellation



Equivalences à la Mundici

Abelian ℓ-groups with 1 ∼= MV-algebras

cancellative commut. distr. ℓ-monoids with 1 ∼= Positive MV-algebras

commut. distr. ℓ-monoids with 1 ∼= ???
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MV-monoidal algebras

Definition (A., 2021)

A MV-monoidal algebra is an algebra ⟨A;⊕,⊙,∨,∧, 0, 1⟩ s.t.

1. ⟨A;⊕, 0⟩ and ⟨A;⊙, 1⟩ are commutative monoids;

2. ⟨A;∨,∧⟩ is a distributive lattice;

3. Both ⊕ and ⊙ distribute over both ∨ and ∧;

4. (x ⊕ y) ⊙ ((x ⊙ y) ⊕ z) = (x ⊙ (y ⊕ z)) ⊕ (y ⊙ z);

5. (x ⊙ y) ⊕ z = ((x ⊕ y) ⊙ ((x ⊙ y) ⊕ z)) ∨ z ;

6. (x ⊕ y) ⊙ z = ((x ⊕ y) ⊙ ((x ⊙ y) ⊕ z)) ∧ z .

We removed

If x ⊕ z = y ⊕ z and x ⊙ z = y ⊙ z , then x = y .

Finitely many equations.
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Equivalence à la Mundici for ℓ-monoids

MV-monoidal algebras are precisely the unit intervals of commutative

distributive ℓ-monoids.

Theorem

The categories

1. of commutative distributive ℓ-monoids with strong unit and

unit-preserving homomorphisms, and

2. of MV-monoidal algebras and homomorphisms

are equivalent.
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Examples of MV-monoidal algebras

1. Every positive MV-algebra.

2. {0 < ε < 1} with ε⊕ ε = ε and ε⊙ ε = 0. This is Γ(M, 1), where

M = {. . .−1 < −1 + ε < 0 < ε < 1 < 1 + ε < 2 < 2 + ε . . . }

with ε + ε = ε. E.g.: (2 + ε) + (3 + ε) = 5 + ε.

M is not cancellative. {0 < ε < 1} is not a positive MV-algebra.
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Free MV-extension



For every bounded distributive lattice L there is an essentially unique

embedding into a Boolean algebra.

Theorem

For every bounded distributive lattice L, for all injective bounded lattice

homomorphisms f : L ↪→ A and g : L ↪→ B into Boolean algebras, the

Boolean algebras generated by the images of f and g are isomorphic

over L.

In other words: if L is a bounded distributive lattice, B is a Boolean

algebra, ι : L ↪→ B is an injective bounded lattice homomorphism and the

image of ι generates B, then the embedding ι is free (i.e. it is the unit of

the left adjoint to the forgetful functor BA → BDL).
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The same thing happens for positive MV-algebras.

Theorem

For every positive MV-algebra L, for all injective bounded lattice

homomorphisms f : L ↪→ A and g : L ↪→ B into MV-algebras, the

MV-algebras generated by the images of f and g are isomorphic over L.

This is equivalent to the fact that every MV-equation is equivalent (in

MV-algebras) to a system of equations in the positive fragment. E.g.: for

all x , y , z in an MV-algebra, we have

x = ¬y ⇐⇒

{
x ⊙ y = 0;

x ⊕ y = 1.

x ⊕ ¬y = z ⇐⇒

{
x ∧ y = z ⊙ y ;

1 = z ⊕ y .
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Recap



Recap

Definition

Positive MV-algebras := positive subreducts of MV-algebras.

� Positive MV-algebras have a finite quasi-equational axiomatization.

� Positive MV-algebras are precisely the unit intervals of cancellative

commutative distributive ℓ-monoids.

� Beyond cancellation: the unit intervals of commutative distributive

ℓ-monoids are MV-monoidal algebras (axiomatized by finitely many

equations).

� The embedding of a positive MV-algebra into some MV-algebra is

essentially unique.

Thank you!
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