Positive subreducts of MV-algebras

Marco Abbadini. University of Salerno, Italy.

Joint work with P. Jipsen, T. Kroupa and S. Vannucci.

Third Algebra Week, University of Siena, Italy, July 4-7, 2023.

- A *positive* referee report: \checkmark .
- A positive COVID test: X.
- A positive MV-algebra: ?

In this talk: I share some results about positive MV-algebras, introduced by (Cabrer, Jipsen, Kroupa, 2019), that shall help to develop their theory.

Positive fragment of Łukasiewicz propositional logic

 \downarrow

Positive MV-algebras

MV-algebras

↑

Łukasiewicz (many-valued) propositional logic (set of truth values: [0, 1]) Positive fragment of classical propositional logic

 \downarrow

Bounded distributive lattices Boolean algebras

I

Classical propositional logic

Examples of positive fragments:

- Positive modal algebras (Dunn, 1995) := "modal algebras without negation".
- Positive relational algebras := "relational algebras without complementation".

Positive MV-algebras: history and motivations

- (Cintula, Kroupa, 2013): positive fragment of Łukasiewicz logic in game theory.
- ▶ (Cabrer, Jipsen, Kroupa, 2019): introduced positive MV-algebras.
- ► (A., 2021): used positive MV-algebras to obtain a duality for Nachbin's compact ordered spaces (≅ stably compact spaces).
- Just like Heyting algebras are based on bounded distributive lattices, an appropriate *many-valued* version of Heyting algebras (MV-intuitionistic logic) may be based on positive MV-algebras.
- Positive MV-algebras are a well-behaved study case for some results in duality theory and general algebra.

MV-algebras

Łukasiewicz many-valued propositional logic [Łukasiewicz, 1920, Łukasiewicz, Tarski, 1930]: [0,1] as the set of truth values. Algebraic semantics of Łukasiewicz logic = \underline{MV} -algebras (Chang, 1958). Consider [0, 1] with the operations:

► $x \oplus y := \min\{x + y, 1\}$. Example: $0.3 \oplus 0.2 = 0.5$, and $0.7 \oplus 0.8 = 1$.

 $\neg x := 1 - x.$

Example: $\neg 0.3 = 0.7$.

I as a constant.

MV-algebras

Definition (Chang, 1958, Mangani, 1973)

An *MV-algebra* (for *Many-Valued algebra*) is an algebra $\langle A; \oplus, \neg, 0 \rangle$ s.t.

- 1. $\langle A; \oplus, 0 \rangle$ is a commutative monoid;
- 2. $\neg \neg x = x;$

3.
$$x \oplus \neg 0 = \neg 0;$$

4.
$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$$

MV-algebras are the algebras $\langle A;\oplus,\neg,0\rangle$ satisfying all equations holding in [0,1], i.e.:

Theorem (Chang, 1959)

[0,1] generates the variety of MV-algebras.

$$\mathsf{I.e.:} \ \{\mathsf{MV}\text{-}\mathsf{algebras}\} = \mathsf{HSP}([0,1]).$$

Examples of MV-algebras:

- ▶ [0,1].
- ▶ Subalgebras of [0,1], such as:
 - 1. $\{0,1\}$ (here, $\oplus = \lor$);
 - 2. $L_3 := \{0, \frac{1}{2}, 1\}.$
 - 3. For every $n \ge 1$, $L_n := \left\{ \frac{0}{n}, \frac{1}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} \right\}$.
 - $\textbf{4. } \mathbb{Q} \cap [0,1].$
- ► Any Boolean algebra: set ⊕ = ∨. One way to think of an MV-algebra is as a generalization of a Boolean algebra where the disjunction might fail to be idempotent.
- The set $[0,1]^X$ of functions from a set X to [0,1].

Every MV-algebra has a bounded distributive lattice reduct:

The corresponding order on [0,1] is the usual order. On $[0,1]^X$, it is the pointwise order.

One can also term-define the De Morgan dual of \oplus :

►
$$x \odot y := \neg(\neg x \oplus \neg y)$$
.
In [0,1]: $x \odot y = \max\{x + y - 1, 0\}$.
Example: $0.7 \odot 0.8 = 0.5$, and $0.3 \odot 0.2 = 0$.

MV-algebras can be understood as intervals of Abelian lattice-ordered groups.

Definition

An Abelian lattice-ordered group (or Abelian ℓ -group, for short) is an Abelian group **G** equipped with a lattice order s.t.:

(Translation invariance) for all $x, y, z \in \mathbf{G}$, $x \le y$ implies $x + z \le y + z$.

Examples:

- 1. \mathbb{R} , \mathbb{Z} , \mathbb{Q} , with the sum.
- 2. The set \mathbb{R}^X of functions from a set X to \mathbb{R} .

MV-algebras as unit intervals

For **G** an Abelian ℓ -group and $1 \in \mathbf{G}$ positive (i.e. $1 \ge 0$), the interval

$$\mathsf{F}(\mathsf{G},1) \coloneqq \{x \in \mathsf{G} \mid 0 \le x \le 1\}$$

is an MV-algebra with

 $x \oplus y \coloneqq (x + y) \land 1$, $\neg x \coloneqq 1 - x$, $0 \coloneqq$ identity element of **G**.

Examples:

1.
$$\Gamma(\mathbb{R}, 1) = [0, 1],$$

2. $\Gamma(\mathbb{Z}, 1) = \{0, 1\}.$
3. $\Gamma(\frac{1}{n}\mathbb{Z}, 1) = \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\} = \mathbb{L}_{n+1}.$
4. For a set X , $\Gamma(\mathbb{R}^{X}, 1) = [0, 1]^{X}.$

Theorem (Mundici, 1986)

Every MV-algebra arises in this way, i.e. it is isomorphic to $\Gamma(\mathbf{G}, 1)$ for some Abelian ℓ -group \mathbf{G} and some positive $1 \in \mathbf{G}$.

Example: let **A** be the MV-algebra of functions from \mathbb{N} to [0, 1].

 $\mathbf{A} \cong \Gamma(?).$

 $\mathbf{A} \cong \Gamma(\{\text{functions from } \mathbb{N} \text{ to } \mathbb{R}\}, 1)$

 $A \cong \Gamma(\{\text{bounded functions from } \mathbb{N} \text{ to } \mathbb{R}\}, 1)$

Mundici's equivalence

For each MV-algebra **A** there is a canonical (**G**, 1) s.t. $\mathbf{A} \cong \Gamma(\mathbf{G}, 1)$, characterized by the condition that 1 is a *strong unit*, i.e. for all $x \in \mathbf{G}$ there is $n \in \mathbb{N}$ s.t.

$$x \leq \underbrace{1 + \cdots + 1}_{n \text{ times}}.$$

Theorem (Mundici's equivalence, 1986)

The categories

- 1. of MV-algebras and homomorphisms, and
- 2. of <u>Abelian l-groups with strong unit</u> and unit-preserving homomorphisms

are equivalent.

Positive MV-algebras

$\frac{\text{Positive MV-algebras}}{\text{MV-algebras}} = \frac{\text{Bounded distributive lattices}}{\text{Boolean algebras}}$

Relationship between bounded distributive lattices and Boolean algebras?

The $\{\lor, \land, 0, 1\}$ -reduct of any Boolean algebra is a bounded distributive lattice, as well as any subalgebra of this reduct.

Bounded distributive lattices = subalgebras of $\{\lor,\land,0,1\}\text{-reducts}$ of Boolean algebras.

 \lor , \land , 0, 1 are order-preserving, and they term-generate all order-preserving Boolean terms.

Bounded distributive lattices = positive subreducts of Boolean algebras.

Definition (Cabrer, Jipsen, Kroupa, 2019)

Positive MV-algebras := subalgebras of the $\{\oplus, \odot, \lor, \land, 0, 1\}$ -reducts of MV-algebras.

 $\oplus,$ $\odot,$ $\lor,$ $\land,$ 0, 1 are order-preserving in each coordinate. We leave out $\neg,$ which is not order-preserving.

Theorem (Cintula, Kroupa, 2013)

 \oplus , \odot , \lor , \land , 0, 1 generate all order-preserving terms of MV-algebras.

Positive MV-algebras = positive subreducts of MV-algebras

= many-valued version of bounded distrib. lattices.

Examples of positive MV-algebras:

- Every MV-algebra, such as [0, 1], $\{0, 1\}$, L_n , $\mathbb{Q} \cap [0, 1]$, $[0, 1]^X$.
- Every bounded distributive lattice (set $\oplus := \lor$ and $\odot := \land$).

Positive MV-algebras are a <u>common generalization</u> of <u>MV-algebras</u> and bounded distributive lattices.

For a poset X, the set of order-preserving functions from X to [0, 1].

Examples of positive MV-algebras

Some subreducts of the MV-algebra $L_3 \times L_3 = \{0, \frac{1}{2}, 1\} \times \{0, \frac{1}{2}, 1\}$:

- Order-preserving functions: $\{(a, b) \in \mathbf{k}_3 \times \mathbf{k}_3 \mid a \leq b\}$.
- Ordinal sum: $\{(a, b) \in \mathbf{L}_3 \times \mathbf{L}_3 \mid a = 0 \text{ or } b = 1\}.$

Positive MV-algebras as intervals

 $\label{eq:MV-algebras} MV-algebras = intervals \mbox{ of Abelian lattice-ordered groups}.$ Positive MV-algebras = intervals of certain lattice-ordered monoids.

Definition

A cancellative commutative distributive ℓ -monoid is a cancellative commutative monoid equipped with a distributive lattice-order s.t. the monoid operation + distributes over the lattice operations \vee and \wedge .

Examples of cancellative commutative distributive ℓ -monoids:

- ▶ \mathbb{R} , \mathbb{Z} , \mathbb{Q} , every Abelian ℓ -group.
- The set of order-preserving functions from a poset X to \mathbb{R} .

Given a cancellative commutative distributive $\ell\text{-monoid}$ M and a positive invertible element $1\in$ M, the set

$$\Gamma(\mathsf{M},1) \coloneqq \{x \in \mathsf{M} \mid 0 \le x \le 1\}$$

is a positive MV-algebra, with

$$\blacktriangleright x \oplus y \coloneqq (x+y) \land 1;$$

$$\blacktriangleright x \odot y \coloneqq (x + y - 1) \lor 0;$$

 \blacktriangleright V, \land , 0, 1 as in **M**.

Theorem (A., Jipsen, Kroupa and Vannucci, 2022)

Every positive MV-algebra arises in this way, i.e. it is isomorphic to $\Gamma(\mathbf{M}, 1)$ for some cancellative commutative distributive ℓ -monoid \mathbf{M} and some positive invertible $1 \in \mathbf{M}$.

Examples:

•
$$[0,1] \cong \Gamma(?)(\mathbb{R},1).$$

• $t_3 = \{0, \frac{1}{2}, 1\} \cong \Gamma(?)(\frac{1}{2}\mathbb{Z},1).$

Positive MV-algebras as intervals

► The three-element bounded distributive lattice, as a positive MV-algebra (set ⊕ := ∨ and ⊙ := ∧)

is isomorphic to

$$\Gamma(?)(\{(a,b)\in\mathbb{Z} imes\mathbb{Z}\mid a\leq b\},(1,1)),$$

i.e. the set of order-preserving functions from $\{x < y\}$ to \mathbb{Z} .

• Let **L** be a bounded distributive lattice, and set $\oplus := \lor$ and $\odot := \land$.

$$\mathbf{L} \cong \Gamma(?).$$

Set X := Priestley dual of **L**. **L** \cong {order-preserving continuous functions $X \to \{0, 1\}$ }. Set $\mathbf{M} :=$ {continuous order-preserving functions $X \to \mathbb{Z}$ }; let $1 \in \mathbf{M}$ be the function constantly equal to $1 \in \mathbb{Z}$. Then

 $L \cong \{ \text{order-preserving continuous functions } X \to \{0,1\} \} = \Gamma(M,1).$

Positive Mundici's equivalence

For each positive MV-algebra **A** there is a canonical choice of **M** and $1 \in \mathbf{M}$ such that $\mathbf{A} \cong \Gamma(\mathbf{M}, 1)$. This is characterized by the condition that 1 is a *strong unit*, i.e. for all $x \in \mathbf{M}$ there is $n \in \mathbb{N}$ s.t.

$$\underbrace{(-1)+\cdots+(-1)}_{n \text{ times}} \le x \le \underbrace{1+\cdots+1}_{n \text{ times}}.$$

Theorem (Positive Mundici's equivalence) (A., Jipsen, Kroupa, Vannucci, 2022)

The categories

- 1. of positive MV-algebras and homomorphisms, and

are equivalent.

Mundici's result follows as a restriction of this equivalence.

Marco Abbadini

Axiomatization of positive MV-algebras

Boolean al- gebras	Bounded dis- tributive lat- tices	MV-algebras	Positive MV- algebras
Variety	Variety	Variety	Not variety 🗡 Quasivariety 🗸
Generated by $\{0,1\}$ as a quasivariety	Generated by $\{0,1\}$ as a quasivariety	Generated by [0, 1] as a qua- sivariety	Generated by [0, 1] as a qua- sivariety ✓
Finitely axiom- atized	Finitely axiom- atized	Finitely axiom- atized	Finitely axiom- atized ✓

Theorem (A., Jipsen, Kroupa and Vannucci, 2022)

Positive MV-algebras are axiomatized by:

- 1. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids;
- 2. $\langle A; \lor, \land \rangle$ is a distributive lattice;
- 3. Both \oplus and \odot distribute over both \lor and \land ;

4. If
$$x_0 = y_0 \oplus y_1$$
 and $x_1 = y_0 \odot y_1$, then

- (Modularity) $(x_0 \odot z) \oplus x_1 = x_0 \odot (z \oplus x_1);$
- $(Absorption) ((x_0 \odot z) \oplus x_1) \land z = x_0 \odot z \text{ and}$ $(x_0 \odot (z \oplus x_1)) \lor z = z \oplus x_1.$
- 5. (Cancellation) If $x \oplus z = y \oplus z$ and $x \odot z = y \odot z$, then x = y.

Free MV-extension

By definition, every positive MV-algebra ${\bf A}$ embeds into some MV-algebra.

Is there a canonical embedding?

Yes, for general algebraic reasons: the forgetful functor

 $\{MV-algebras\} \longrightarrow \{Positive MV-algebras\}.$

has a left adjoint (for general algebraic reasons). For each positive MV-algebra **A**, the component $\eta_{\mathbf{A}} : \mathbf{A} \hookrightarrow \mathbf{B}$ of the unit is injective (fairly immediate), and we call $\eta_{\mathbf{A}}$ (or simply the MV-algebra **B**) the *free MV-extension* of **A**.

Positive MV-algebras

What is the free MV-extension of the following positive MV-algebra?

 $L_3 \times L_3$? $[0,1] \times [0,1]$? Something else?

Canonical embedding

Theorem (A., Jipsen, Kroupa, Vannucci, 2022)

Let $A \hookrightarrow B$ be an embedding of a positive MV-algebra A into an MV-algebra B (i.e. A is a positive subreduct of B), and let C be the MV-subalgebra of B generated by A. The embedding $A \hookrightarrow C$ is the free MV-extension of A.

In other words: an embedding of a positive MV-algebra into an MV-algebra is free iff it is MV-generating.

There is a unique generating embedding (the universal one):

Theorem (Equivalent reformulation)

Let **A** be a positive MV-algebra, let $f : \mathbf{A} \hookrightarrow \mathbf{B_1}$ and $g : \mathbf{A} \hookrightarrow \mathbf{B_2}$ be two injective positive MV-homomorphisms into MV-algebras, and suppose that the images of f and g generate $\mathbf{B_1}$ and $\mathbf{B_2}$ as MV-algebras. Then $\mathbf{B_1}$ and $\mathbf{B_2}$ are isomorphic over \mathbf{A} . Universal property:

Theorem (Equivalent reformulation)

Given MV-algebras **B** and **C** and a partial function $f : \mathbf{A} \subseteq \mathbf{B} \to \mathbf{C}$ such that **A** MV-generates **B** and is closed under \oplus , \odot , \lor , \land , 0 and 1, and $f : \mathbf{A} \to \mathbf{C}$ preserves these operations, f extends uniquely to an MV-homomorphism $\mathbf{B} \to \mathbf{C}$.

Computational advantage:

The set of homomorphisms of MV-algebras from $\mathtt{L}_3\times \mathtt{L}_3$ to an MV-algebra ${\bf C}$ is in bijection with the set of homomorphisms of positive MV-algebras from the algebra below to ${\bf C}.$

(For a general fact holding in subreducts of prevarieties (work in progress with C. van Alten),) this is equivalent to the following:

Theorem

Every MV-equation is equivalent (in MV-algebras) to a system of equations in the positive fragment.

Example: for all x, y, z in an MV-algebra:

$$\begin{aligned} x &= \neg y \iff \begin{cases} x \oplus y = 1; \\ x \odot y = 0; \end{cases} \\ x \oplus \neg y = z \iff \begin{cases} 1 = z \oplus y; \\ x \land y = z \odot y. \end{cases} \end{aligned}$$

Digression: characterization of unique embedding

Fact

Each cancellative commutative monoid **M** has a **unique** (up to iso) generating embedding $\mathbf{M} \hookrightarrow \mathbf{G}$ into an Abelian group.

Uniqueness up to iso means:

Example: $\mathbb{N} \hookrightarrow \mathbb{Z}$.

It is not difficult to prove that every $g \in \mathbf{G}_1$ is a difference g = x - y of elements of **M**. Then, set $\psi(g) \coloneqq f(x) - f(y) \in \mathbf{G}_2$.

Is this a well-defined function?

Suppose x - y = x' - y' and let us prove f(x) - f(y) = f(x') - f(y').

$$\begin{aligned} x - y &= x' - y' \iff x + y' = x' + y \\ &\implies f(x + y') = f(x' + y) \\ &\iff f(x) + f(y') = f(x') + f(y) \\ &\iff f(x) - f(y) = f(x') - f(y'). \end{aligned}$$

Further, one proves that ψ is a group isomorphism that extends f.

Key facts used:

- 1. If **M** is a generating submonoid of an Abelian group **G**, then every element of **G** is a difference of two elements of **M**.
- 2. For all x, y in an Abelian group,

$$x-y=x'-y'\iff x+y'=x'+y.$$

Fact

Any equation between two terms in the language of Abelian groups is equivalent to an equation in the language of monoids.

Example: for all x, y, z in an Abelian group

$$-x + y - z = x \iff y = x + x + z.$$

(Thanks to the cancellation property.)

For arbitrary (i.e. non-necessarily commutative) monoids/groups, we do **not** have this uniqueness of embeddings.

For example, the monoid $\{x, y, z\}^*$ of words on three letters has distinct non-isomorphic generating embeddings into groups:

- ▶ into the free group $Free(\{x, y, z\})$ on three elements $(x \mapsto x, y \mapsto y, z \mapsto z)$ and
- ▶ into the free group $Free(\{x, y\})$ on two elements $(x \mapsto x, y \mapsto y, z \mapsto xy^{-1}x)$.

The equation $z = xy^{-1}x$ cannot be expressed via an equation in the language of monoids.

Fact

Each cancellative commutative distributive ℓ -monoid M has a **unique** (up to iso) generating embedding $M \hookrightarrow G$ into an Abelian ℓ -group.

Key facts used:

- 1. If $\mathbf{M} \hookrightarrow \mathbf{G}$ is a generating sub- ℓ -monoid of an Abelian ℓ -group \mathbf{G} , then every element of \mathbf{G} is a difference of elements of \mathbf{M} .
- 2. For all x, y in an Abelian ℓ -group,

$$x-y=x'-y'\iff x+y'=x'+y.$$

Fact

Any equation between two terms in the language of Abelian ℓ -groups is equivalent to an equation in the language of ℓ -monoids.

Fact

Each bounded distributive lattice L has a unique (up to iso) generating embedding $L \hookrightarrow B$ into a Boolean algebra.

This embedding is called the *free Boolean extension*.

 If L → B is a generating bounded sublattice of a Boolean algebra B, then every element of B is a join of finitely many differences of elements of L:

$$z = \bigvee_{i=1}^n x_i \wedge \neg y_i.$$

2. Every equation between joins of differences is equivalent to a system of equations in the language of bounded distributive lattices.

Distributivity in a lattice: For all a, b, c, a = b iff $a \lor c = b \lor c$ and $a \land c = b \land c$.

$$x \wedge \neg y = z \iff \begin{cases} (x \wedge \neg y) \lor y = z \lor y \\ (x \wedge \neg y) \land y = z \land y \end{cases} \iff \begin{cases} x \lor y = z \lor y \\ 0 = z \land y. \end{cases}$$

Fact

Any equation between two terms in the language of Boolean algebras is equivalent to a system of equations in the language of bounded distributive lattices.

Fact

Each positive MV-algebra ${\bf A}$ has a unique (up to iso) generating embedding ${\bf A} \hookrightarrow {\bf B}$ into an MV-algebra.

We called this embedding the *free MV-extension* of **A**.

 If A → B is a generating positive MV-subalgebra of an MV-algebra B, then every element of B is a sum of finitely many "differences" of elements of A:

$$z=\bigoplus_{i=1}^n x_i\odot\neg y_i.$$

2. Every equation between sums of differences is equivalent to a system of equations in the language of positive MV-algebras.

Cancellation: For all a, b, c in an MV-algebra, a = b iff $a \oplus c = b \oplus c$ and $a \odot c = b \odot c$.

$$x \odot \neg y = z \iff \begin{cases} (x \odot \neg y) \oplus y = z \oplus y \\ (x \odot \neg y) \odot y = z \odot y. \end{cases} \iff \begin{cases} x \lor y = z \oplus y \\ 0 = z \odot y. \end{cases}$$

Fact

Any equation between two terms in the language of MV-algebras is equivalent to a system of equations in the language of positive MV-algebras.

Definition

A prevariety is a class $\mathcal V$ of algebras closed under subalgebras and products.

Examples: any variety, any quasivariety.

Setting

• An algebraic language \mathcal{L}_+ and a sublanguage $\mathcal{L}_- \subseteq \mathcal{L}_+$.

• Two prevarieties \mathcal{V}_+ and \mathcal{V}_- for \mathcal{L}_+ and \mathcal{L}_- , respectively. We assume " $\mathcal{V}_+ \subseteq \mathcal{V}_-$ " i.e.: \mathcal{V}_- contains all \mathcal{L}_- -reducts of algebras in \mathcal{V}_+ .

For example:

- 1. $\mathcal{V}_+ = \{ Abelian \text{ groups} \}, \mathcal{V}_- = \{ cancellative \text{ commutative monoids} \}.$
- 2. $\mathcal{V}_+ = \{\text{Abelian groups}\}, \mathcal{V}_- = \{\text{commutative monoids}\}.$
- 3. $\mathcal{V}_+ = \{\text{groups}\}, \mathcal{V}_- = \{\text{monoids}\}.$
- 4. $\mathcal{V}_+ = \{MV\text{-algebras}\}, \mathcal{V}_- = \{\text{positive MV-algebras}\}.$

Definition

Unique embeddability property :=

Given $\mathbf{A} \in \mathcal{V}_{-}$, $\mathbf{B}, \mathbf{C} \in \mathcal{V}_{+}$, and injective \mathcal{V}_{-} -homomorpisms $f : \mathbf{A} \hookrightarrow \mathbf{B}$ and $g : \mathbf{A} \hookrightarrow \mathbf{C}$ whose images \mathcal{V}_{+} -generate \mathbf{B} and \mathbf{C} respectively, there is a \mathcal{V}_{+} -isomorphism $h : \mathbf{B} \to \mathbf{C}$ making the following diagram commute.

We have the unique embeddability property for $V_+ = \{Abelian \text{ groups}\}\)$ and $V_- = \{commutative monoids\}.$

We do not have the unique embeddability property for $V_+ = \{groups\}$ and $V_- = \{monoids\}$.

Definition

Expressibility property := for each pair $(\sigma(x_1, ..., x_n), \rho(x_1, ..., x_n))$ of terms in \mathcal{L}_+ , there is a (finite) set of pairs $(\alpha_i(x_1, ..., x_n), \beta_i(x_1, ..., x_n))_i$ of terms in \mathcal{L}_- s.t., for all $\mathbf{A} \in \mathcal{V}_+$ and $x_1, ..., x_n \in \mathbf{A}$,

$$\sigma(x_1,\ldots,x_n)=\rho(x_1,\ldots,x_n) \Leftrightarrow \forall i \ \alpha_i(x_1,\ldots,x_n)=\beta_i(x_1,\ldots,x_n).$$

I.e.: every equation in \mathcal{L}_+ is equivalent to a system of equations in \mathcal{L}_- . For Abelian groups and commutative monoids we have the expressibility property.

For groups and monoids we do not have the expressibility property.

Theorem (ongoing joint work with C. van Alten)

Unique embeddability property \iff expressibility property.

Main usage: proving the unique embeddability property by showing that equations in the richer language can be expressed in the poorer language (e.g.: x - y = x' - y' iff x + y' = y + x').

For positive MV-algebras:

Every equation in the language of Abelian ℓ -groups can be rewritten in the language of ℓ -monoids.

Every equation in the lan- ← guage of MV-algebras can be rewritten in the language of positive MV-algebras.

- - Each positive MV-algebra has a unique generating embedding into an MV-algebra.

Recap

Definition

Positive MV-algebras := $\{\oplus, \odot, \lor, \land, 0, 1\}$ -subreducts of MV-algebras.

- 1. Not a variety. 🗡
- 2. Quasivariety, generated by [0, 1]. \checkmark
- 3. Finite quasi-equational axiomatization. 🗸
- 4. Intervals of certain ℓ-monoids. ✓
- 5. Unique embedding into MV-algebras. (Embedding + MV-generating ⇒ Free.) ✓

Future directions

Future directions

- 1. What makes Mundici's equivalence work? Goal: to obtain an equivalence à la Mundici between
 - \blacktriangleright certain algebras in the signature $\{\oplus,\odot,0,1\},$ and
 - certain algebras in the signature {0, +, 1, τ₀, τ₁}, where τ₀ and τ₁ are unary symbols to be thought of as τ₀(x) = x ∨ 0 and τ₁(x) = x ∧ 1.

I would like to do it without assuming the cancellation property so that (not necessarily distributive) bounded lattices can be seen as intervals of monoids.

(Side question: is there a *unique* generating embedding of $\{\oplus, \odot, 0, 1\}$ -subreducts of MV-algebras into MV-algebras? Equivalently, is every equation in the language of MV-algebras equivalent to an equation in $\{\oplus, \odot, 0, 1\}$?)

Yet a further step would be to go to the non-commutative case.

- 2. (Jointly with A. Přenosil): MV-version of Blok-Esakia theorem.
 - Consider a notion of modal MV-algebras which is an MV-version of S4 in the sense that the Gödel–McKinsey–Tarski translation $(x \rightarrow y = \Box(\neg x + y))$ connects the logic MV.S4 and the intuitionistic version of Łukasiewicz (= logic of positive MV-algebras where the product is residuated).
 - Then, try to extend this to some sort of Blok-Esakia style bijection between the extensions of MV.S4.Grz (whatever this is) and the intuitionistic version of Łukasiewicz.

 (From an input of a referee:) Does the characterization of the unique embeddability property extend beyond algebraic structures to a general model-theoretic setting? (Replacing equations by atomic formulae.) 4. (From an input of L. Carai) Duality à la Baker-Beynon for positive MV-algebras?

Recap

Definition

 $\mathsf{Positive}\ \mathsf{MV}\text{-}\mathsf{algebras} \coloneqq \{\oplus, \odot, \lor, \land, 0, 1\}\text{-}\mathsf{subreducts}\ \mathsf{of}\ \mathsf{MV}\text{-}\mathsf{algebras}.$

- 1. Not a variety. 🗡
- 2. Quasivariety, generated by [0,1]. 🗸
- 3. Finite quasi-equational axiomatization. 🗸
- 4. Intervals of certain ℓ -monoids. 🗸
- 5. Unique embedding into MV-algebras. (Embedding + MV-generating \Rightarrow Free.) \checkmark

Based on:

- M. A., P. Jipsen, T. Kroupa, and S. Vannucci. A finite axiomatization of positive MV-algebras. Algebra Universalis, 83:28, 2022.
- M. A. On the axiomatisability of the dual of compact ordered spaces. PhD thesis, University of Milan, 2021. (Ch. 4)
- M. A. Equivalence à la Mundici for commutative lattice-ordered monoids. Algebra Universalis, 82:45, 2021.

Thank you!