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Abelian groups and commutative monoids

For each commutative monoid M, there is (up to isomorphism) at most
one embedding M < G of M into an Abelian group G whose image

generates G as a group.

Uniqueness up to isomorphism means:
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Example: N < Z (wrt addition).
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Sketch of proof. Let i and f be injective monoid homomorphisms with
generating images. Wlog, i: M C G.
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Every z € G is a difference z = x — y of elements of M.

Set ¢(z) = f(x) — f(y).

It is well-defined:

x—y:x’—y’(:}x—l—y’:x’—l—y
— flx+y) = F(X +)
— f(x)+f(y)=f(X)+f(y)
= f(x) = f(y) = f(x') = f(¥').
Further, one proves that v is a group isomorphism that extends f.
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For every Abelian group G and all x,y,x',y’ € G,

x—y=x—y = x+y =x+y.

Fact
Any equation between two terms in the language of Abelian groups is
equivalent to an equation in the language of monoids.

Example: —x+y—z=x <= y=x+x+z.
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Groups and monoids

For arbitrary (i.e. non-necessarily commutative) monoids/groups, we do
not have this uniqueness of embeddings.

E.g.: the monoid {x,y, z}* of words on three letters has two
non-isomorphic generating embeddings into groups:
> into the free group » into the free group
Free({x,y, z}) Free({x, y})

{Xayaz}* —>Free({z7y7z}) {X,y,Z}* HFree({Xay})
XX X X
yr—=y yr—=y

zZ+— Z. zZ— xy_lx.
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Groups and monoids

For groups, the equation z = xy~
in the language of monoids.
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X cannot be expressed via an equation
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Our main result is an equivalence between two conditions: the “unique
embeddability property” and the “expressibility property”.
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Recall that a prevariety (a.k.a. SP-class) is a class of similar algebras
closed under subalgebras and products.

Examples: any variety, any quasi-variety.

» An algebraic language £, and a sublanguage £L_ C L, .

» Two prevarieties V; and V_ for £, and L_ respectively, such that
all £_-reducts of algebras in V, belong to V_.

For example:

1. V4 = {Abelian groups}, V_ = {commutative monoids}.
2. V4 = {groups}, V_ = {monoids}.
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Recall: Every commutative monoid has at most one embedding into an
Abelian group with generating image.

Definition

Unique embeddability property .= for all Ac V_, B,C € V, and
injective V_-homomorpisms f: A< B and g: A — C whose images

V., -generate B and C respectively, there is a V, -isomorphism h: B — C
making the following diagram commute.

For V; = {Abelian groups} and V_ = {commutative monoids}: the
unique embeddability property holds.

For V; = {groups} and V_ = {monoids}: the unique embeddability
property does not hold.
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An equivalent formulation is: every injective V_-homomorpism A — B
(AeV_, BeV,) whose image V., -generate B is a free extension, i.e.
the free way in which A embeds into an algebra in V. In other words, it
is (up to an iso) the component at A of the unit of the adjunction that
has the forgetful functor V, — V_ as a right adjoint.

In short: “injective 4+ generating = free”.
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Definition

Expressibility property = every equation in L is equivalent to a system
of equations in £_.

l.e.: for each pair (o(x1,...,Xn), p(x1,...,Xn)) of terms in L, there is a
(finite) set of pairs (a;(x1, ..., xn), Bi(x1,...,Xn)); of terms in L_ s.t.,
forall A€ V, and xq,...,x, € A,

o(x1y .y Xn) = p(X1, ..y %) & Vi ai(xy,...,xn) = Bi(X1,- .., Xn)-

For V, = {Abelian groups} and V_ = {commutative monoids}: it holds.
Eg x—y=x'—y iffx+y =x"+y.

For V, = {groups} and V_ = {monoids}: it does not hold. E.g.:

z=xy Ix.
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Unique embeddability property <= expressibility property.
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Examples
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Rational vector spaces and Abelian groups

V. = {rational vector spaces}, V_ = {Abelian groups}.
True or false? (Unique embeddability property)

For each Abelian group G, there is (up to isomorphism) at most one
embedding (of Abelian groups) G < V into a rational vector space
whose image generates V (as a rational vector space).

(Example: Z — Q.)

Expressibility property? %x +y= %z is equivalent to 3x + 6y = 4z.
Fact (Expressibility property)

Every equation in the language of Q-vector spaces is equivalent to an

equation in the language of Abelian groups.

Answer: true.
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Complex and real vector spaces

V., = {complex vector spaces}, V_ = {real vector spaces}.

True or false? (Unique embeddability property)

For each real vector space V/, there is (up to isomorphism) at most one
embedding (of Abelian groups) V < W into a complex vector space
whose image generates W (as a complex vector space).

Expressibility property? The equation x = jy does not seem to be
equivalent to a system of equations in the language of real vector spaces.

The embeddings f: RXR - CxCand g: RxR < C are
non-isomorphic. f(0,1) # if(1,0), g(0,1) = ig(1,0).

Answer: false.

In turn, we can then infer that the equation x = iy is not equivalent to
an equation in the language of real vector space.
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Abelian /-groups and monoids

V., = Abelian lattice-ordered groups.
V_ = commutative lattice-ordered monoids.
The expressibility and the unique embeddability properties hold.

Example: x V (z — y) = x — z is equivalent to
(x+y+z)V(z+z)=x+y.
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Boolean algebras and lattices

Marco Abbadini

V; = {Boolean algebras}, V_ = {bounded distributive lattices}.

Expressibility property

Every equation in the language of Boolean algebras is equivalent to a
system of equations in the language of bounded distributive lattices.

. . xNz=0;
Example: x V -y = —z is equivalent to
xVy=xVz.

Unique embeddability property

For each bounded distributive lattice L, there is (up to isomorphism) at
most one embedding L < B into a Boolean algebra whose image
generates B (as a Boolean algebra).

This embedding is called the free Boolean extension of L.
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MV-algebras and positive MV-algebras

V, = MV-algebras.

V_ = positive MV-algebras (i.e. {&,®,V,A,0, 1}-subreducts of
MV-algebras).

Both the expressibility and the unique embeddability properties hold.
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Modal algebras and positive modal algebras

V. = Modal algebras.
V_ = Positive modal algebras.
The unique embeddability and the expressibility properties do not hold.

Example: the equation (x A —y) = 0 is not expressible via a system of
equations in the language of positive modal algebras.
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Summing it up and future directions
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Summing it up and future directions

Main theorem
Unique embeddability property <= expressibility property.

This was established in the setting of prevarieties.

Future direction (from a suggestion of a referee): does the equivalence
extend beyond algebraic structures to a general model-theoretic setting?

Thank you!
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