Free extensions

Marco Abbadini. University of Birmingham, UK.

Joint work with C. van Alten.

LATD 2023, Tbilisi, Georgia, September 2023.

This research was supported by the project MOSAIC (H2020-MSCA-RISE-2020 Project 101007627) and by the Italian Ministry of University and Research through the PRIN project n. 20173WKCM5 Theory and applications of resource sensitive logics.

Abelian groups and commutative monoids

Fact

For each commutative monoid M, there is (up to isomorphism) at most one embedding $M \hookrightarrow G$ of M into an Abelian group G whose image generates G as a group.

Uniqueness up to isomorphism means:

Example: $\mathbb{N} \hookrightarrow \mathbb{Z}$ (wrt addition).

Sketch of proof. Let i and f be injective monoid homomorphisms with generating images. Wlog, $i: M \subseteq G$.

Every $z \in G$ is a difference $z=x-y$ of elements of M.
Set $\psi(z):=f(x)-f(y)$.
It is well-defined:

$$
\begin{aligned}
x-y=x^{\prime}-y^{\prime} & \Longleftrightarrow x+y^{\prime}=x^{\prime}+y \\
& \Longleftrightarrow f\left(x+y^{\prime}\right)=f\left(x^{\prime}+y\right) \\
& \Longleftrightarrow f(x)+f\left(y^{\prime}\right)=f\left(x^{\prime}\right)+f(y) \\
& \Longleftrightarrow f(x)-f(y)=f\left(x^{\prime}\right)-f\left(y^{\prime}\right)
\end{aligned}
$$

Further, one proves that ψ is a group isomorphism that extends f.

Key fact used

For every Abelian group G and all $x, y, x^{\prime}, y^{\prime} \in G$,

$$
x-y=x^{\prime}-y^{\prime} \Longleftrightarrow x+y^{\prime}=x^{\prime}+y .
$$

Fact

Any equation between two terms in the language of Abelian groups is equivalent to an equation in the language of monoids.

Example: $-x+y-z=x \Longleftrightarrow y=x+x+z$.

Groups and monoids

For arbitrary (i.e. non-necessarily commutative) monoids/groups, we do not have this uniqueness of embeddings.
E.g.: the monoid $\{x, y, z\}^{*}$ of words on three letters has two non-isomorphic generating embeddings into groups:

- into the free group

Free($\{x, y, z\}$)

$$
\begin{array}{rlrl}
\{x, y, z\}^{*} & \longrightarrow \operatorname{Free}(\{z, y, z\}) & \{x, y, z\}^{*} & \longrightarrow \operatorname{Free}(\{x, y\}) \\
x & \longmapsto x & x & \longmapsto x \\
y & \longmapsto y & y & \longmapsto y \\
z & \longmapsto z . & z & \longmapsto x y^{-1} x .
\end{array}
$$

- into the free group

Free($\{x, y\}$)

Groups and monoids

For groups, the equation $z=x y^{-1} x$ cannot be expressed via an equation in the language of monoids.

Main result

Our main result is an equivalence between two conditions: the "unique embeddability property" and the "expressibility property".

Recall that a prevariety (a.k.a. $S P$-class) is a class of similar algebras closed under subalgebras and products.

Examples: any variety, any quasi-variety.

Setting

- An algebraic language \mathcal{L}_{+}and a sublanguage $\mathcal{L}_{-} \subseteq \mathcal{L}_{+}$.
- Two prevarieties \mathcal{V}_{+}and \mathcal{V}_{-}for \mathcal{L}_{+}and \mathcal{L}_{-}respectively, such that all \mathcal{L}_{-}-reducts of algebras in \mathcal{V}_{+}belong to \mathcal{V}_{-}.

For example:

1. $\mathcal{V}_{+}=\{$Abelian groups $\}, \mathcal{V}_{-}=\{$commutative monoids $\}$.
2. $\mathcal{V}_{+}=\{$groups $\}, \mathcal{V}_{-}=\{$monoids $\}$.

Recall: Every commutative monoid has at most one embedding into an Abelian group with generating image.

Definition

Unique embeddability property := for all $A \in \mathcal{V}_{-}, B, C \in \mathcal{V}_{+}$and injective \mathcal{V}_{-}-homomorpisms $f: A \hookrightarrow B$ and $g: A \hookrightarrow C$ whose images \mathcal{V}_{+}-generate B and C respectively, there is a \mathcal{V}_{+-}-isomorphism $h: B \rightarrow C$ making the following diagram commute.

For $\mathcal{V}_{+}=\{$Abelian groups $\}$and $\mathcal{V}_{-}=\{$commutative monoids $\}$: the unique embeddability property holds.

For $\mathcal{V}_{+}=\{$groups $\}$and $\mathcal{V}_{-}=\{$monoids $\}$: the unique embeddability property does not hold.

An equivalent formulation is: every injective \mathcal{V}_{-}-homomorpism $A \hookrightarrow B$ $\left(A \in \mathcal{V}_{-}, B \in \mathcal{V}_{+}\right)$whose image \mathcal{V}_{+}-generate B is a free extension, i.e. the free way in which A embeds into an algebra in \mathcal{V}_{+}. In other words, it is (up to an iso) the component at A of the unit of the adjunction that has the forgetful functor $\mathcal{V}_{+} \rightarrow \mathcal{V}_{-}$as a right adjoint.

In short: "injective + generating \Rightarrow free".

Definition

Expressibility property := every equation in \mathcal{L}_{+}is equivalent to a system of equations in \mathcal{L}_{-}.
I.e.: for each pair $\left(\sigma\left(x_{1}, \ldots, x_{n}\right), \rho\left(x_{1}, \ldots, x_{n}\right)\right)$ of terms in \mathcal{L}_{+}, there is a (finite) set of pairs $\left(\alpha_{i}\left(x_{1}, \ldots, x_{n}\right), \beta_{i}\left(x_{1}, \ldots, x_{n}\right)\right)_{i}$ of terms in \mathcal{L}_{-}s.t., for all $A \in \mathcal{V}_{+}$and $x_{1}, \ldots, x_{n} \in A$,

$$
\sigma\left(x_{1}, \ldots, x_{n}\right)=\rho\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \forall i \alpha_{i}\left(x_{1}, \ldots, x_{n}\right)=\beta_{i}\left(x_{1}, \ldots, x_{n}\right) .
$$

For $\mathcal{V}_{+}=\{$Abelian groups $\}$and $\mathcal{V}_{-}=\{$commutative monoids $\}$: it holds.
E.g. $x-y=x^{\prime}-y^{\prime}$ iff $x+y^{\prime}=x^{\prime}+y$.

For $\mathcal{V}_{+}=\{$groups $\}$and $\mathcal{V}_{-}=\{$monoids $\}$: it does not hold. E.g.:
$z=x y^{-1} x$.

Main theorem

Unique embeddability property \Longleftrightarrow expressibility property.

Examples

Rational vector spaces and Abelian groups

$\mathcal{V}_{+}:=\{$rational vector spaces $\}, \mathcal{V}_{-}:=\{$Abelian groups $\}$.

True or false? (Unique embeddability property)

For each Abelian group G, there is (up to isomorphism) at most one embedding (of Abelian groups) $G \hookrightarrow V$ into a rational vector space whose image generates V (as a rational vector space).
(Example: $\mathbb{Z} \hookrightarrow \mathbb{Q}$. .)
Expressibility property? $\frac{1}{2} x+y=\frac{2}{3} z$ is equivalent to $3 x+6 y=4 z$.

Fact (Expressibility property)

Every equation in the language of \mathbb{Q}-vector spaces is equivalent to an equation in the language of Abelian groups.

Answer: true.

Complex and real vector spaces

$\mathcal{V}_{+}=\{$complex vector spaces $\}, \mathcal{V}_{-}=\{$real vector spaces $\}$.

True or false? (Unique embeddability property)

For each real vector space V, there is (up to isomorphism) at most one embedding (of Abelian groups) $V \hookrightarrow W$ into a complex vector space whose image generates W (as a complex vector space).

Expressibility property? The equation $x=i y$ does not seem to be equivalent to a system of equations in the language of real vector spaces.

The embeddings $f: \mathbb{R} \times \mathbb{R} \hookrightarrow \mathbb{C} \times \mathbb{C}$ and $g: \mathbb{R} \times \mathbb{R} \hookrightarrow \mathbb{C}$ are non-isomorphic. $f(0,1) \neq i f(1,0), g(0,1)=i g(1,0)$.

Answer: false.
In turn, we can then infer that the equation $x=i y$ is not equivalent to an equation in the language of real vector space.

Abelian ℓ-groups and monoids

$\mathcal{V}_{+}=$Abelian lattice-ordered groups.
$\mathcal{V}_{-}=$commutative lattice-ordered monoids.
The expressibility and the unique embeddability properties hold.
Example: $x \vee(z-y)=x-z$ is equivalent to
$(x+y+z) \vee(z+z)=x+y$.

Boolean algebras and lattices

$$
\mathcal{V}_{+}=\{\text {Boolean algebras }\}, \mathcal{V}_{-}=\{\text {bounded distributive lattices }\} .
$$

Expressibility property

Every equation in the language of Boolean algebras is equivalent to a system of equations in the language of bounded distributive lattices.

Example: $x \vee \neg y=\neg z$ is equivalent to $\left\{\begin{array}{l}x \wedge z=0 ; \\ x \vee y=x \vee z .\end{array}\right.$

Unique embeddability property

For each bounded distributive lattice L, there is (up to isomorphism) at most one embedding $L \hookrightarrow B$ into a Boolean algebra whose image generates B (as a Boolean algebra).

This embedding is called the free Boolean extension of L.

MV-algebras and positive MV-algebras

$\mathcal{V}_{+}=\mathrm{MV}$-algebras.
$\mathcal{V}_{-}=$positive MV-algebras (i.e. $\{\oplus, \odot, \vee, \wedge, 0,1\}$-subreducts of MV-algebras).
Both the expressibility and the unique embeddability properties hold.

Modal algebras and positive modal algebras

$\mathcal{V}_{+}=$Modal algebras.
$\mathcal{V}_{-}=$Positive modal algebras.
The unique embeddability and the expressibility properties do not hold.
Example: the equation $\diamond(x \wedge \neg y)=0$ is not expressible via a system of equations in the language of positive modal algebras.

Summing it up and future directions

Summing it up and future directions

Main theorem

Unique embeddability property \Longleftrightarrow expressibility property.
This was established in the setting of prevarieties.
Future direction (from a suggestion of a referee): does the equivalence extend beyond algebraic structures to a general model-theoretic setting?

Thank you!

