Stone duality for finitely valued algebras with a near-unanimity term

Marco Abbadini. University of Birmingham, UK.

Joint work with Adam Přenosil.

MOSAIC Workshop 2023, Vienna, Austria, 29 September 2023.

Goal: represent algebraic structures as algebras of continuous functions satisfying some local constraints.

Algebraic structure \leftrightarrow Space + local constraints

- Stone duality (1936): Boolean algebra ≅ algebra of continuous functions from a Stone space X to {0,1} with pointwise operations.
 Space: a Stone space.
 Local constraints: none.
- Priestley duality (1969): bounded distributive lattice ≅ algebra of order-preserving continuous functions from a Priestley space X to {0 < 1}. (Priestley space = Stone space with a partial order satisfying compatibility properties.)
 Space: a Stone space.
 Local constraints: the order.

Algebraic structure \leftrightarrow Space + local constraints

We investigate the case where the constraints can be made *very* local: on subsets of cardinality ≤ 2 . \rightsquigarrow Easier to describe them.

 $\mathbb{ISP}(L) \coloneqq \text{class of algebras isomorphic to a subalgebra of a power of L.}$ Davey & Werner (1983): duality for classes of the form $\mathbb{ISP}(L)$ where L is a <u>finite</u> algebra with a near unanimity term. (E.g.: L has a lattice reduct.)

Example: for $\mathbf{L} = \{0, 1\}$ we get Stone/Priestley dualities.

Our main result: we give an analagous duality, where the generating algebra ${\bm L}$ is allowed to be infinite.

Our motivation: representation of *positive MV-algebras*, which are algebras related to Łukasiewicz many-valued logic: $\{0, 1\}$ is replaced by [0, 1].

Examples of generating algebra L:

- ► L = {0,1}, with the signature of Boolean algebras. ~> Stone duality (1936).
- ▶ $L = \{0, 1\}$, with the signature of bounded distributive lattices. \rightsquigarrow Priestley duality (1969).
- L = [0, 1], with the signature of MV-algebras. → Duality for weakly locally finite MV-algebras (Cignoli, Marra, 2012).
- ▶ L = [0, 1], with the signature of positive MV-algebras, i.e. { $\oplus, \odot, \lor, \land, 0, 1$ }.
- ▶ $L = \mathbb{R}$, with the signature of ℓ -groups with a designated constant 1.
- ▶ $L = \mathbb{R}$, with the signature of ℓ -monoids with designated constants -1 and 1, i.e. $\{+, \lor, \land, 0, 1, -1\}$.

Hypotheses on the generating algebra L (think e.g. of \mathbb{R}):

- 1. L has a majority term. (E.g.: L has a lattice reduct.) (It can be generalized to near-unanimity terms.)
- (L is "indecomposable":) L is hereditarily finitely subdirectly irreducible, i.e. every subalgebra of L is finitely subdirectly irreducible. (E.g.: every subalgebra of L is simple, and L has two distinct constants.)
- 3. (L is "rigid":) For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

Under these hypotheses, we provide a duality for the category of algebras in $\mathbb{ISP}(L)$ that are *finitely* L-valued.

We will represent an algebra via a

- 1. Stone space X, together with
- 2. a "local constraint" for each subset $I \subseteq X$ of cardinality ≤ 2 .

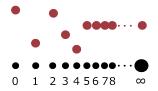
For Priestley duality, $\{constraints\} = order$.

Example

 $\textbf{L}=\langle \mathbb{R};+,\vee,\wedge,0,1,-1\rangle.$ (Commutative lattice-ordered monoid...)

 $\mathbf{A} := \{ f : \mathbb{N} \to \mathbb{R} \mid f \text{ is eventually constant} \}.$

 $\mathbf{A} \stackrel{?}{\cong} \{ \text{cont. functions over a Stone space satisfying local constraints} \}.$ Stone space: $\alpha \mathbb{N} = \mathbb{N} \cup \{\infty\}$, the one-point compactification of \mathbb{N} .

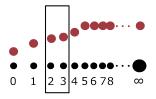


A continuous function from $\alpha \mathbb{N}$ to the discrete space \mathbb{R} .

A \cong algebra of continuous functions from $\alpha \mathbb{N}$ to the <u>discrete</u> space \mathbb{R} . (No local constraints.)

Marco Abbadini

 $\mathbf{B} := \{f \colon \mathbb{N} \to \mathbb{R} \mid f \text{ is eventually constant and order-preserving}\}.$



A continuous order-preserving function from $\alpha \mathbb{N}$ to the discrete space \mathbb{R} .

 $\mathbf{B} \cong$ algebra of *order-preserving* continuous functions from $\alpha \mathbb{N}$ to the discrete space \mathbb{R} .

Order-preservation is given by a family of binary constraints.

Constraint on $\{2,3\}$: $\{(x,y) \in \mathbb{R}^2 | x \le y\}$.

Marco Abbadini

We equip L with the discrete topology. A continuous function from a Stone space X to L has finite image.

" $I \subseteq_2 X$ " stands for "I is a subset of X of cardinality at most 2".

Definition

A Priestley L-space consists of a Stone space X and, for each $I \subseteq_2 X$, of a subalgebra A_I of L^I s.t.

- (Local-to-global extension) For all I ⊆₂ X, every f ∈ A_I has a continuous extension g: X → L that satisfies all constraints, i.e. s.t., for all J ⊆₂ X, g|_J ∈ A_J.
- 2. (Separation) For all distinct $x, y \in X$, there is $f \in \mathbf{A}_{\{x,y\}}$ s.t. $f(x) \neq f(y)$.

E.g.: $X = \alpha \mathbb{N}$. For $I \subseteq_2 \alpha \mathbb{N}$, $A_I := \{f : I \to \mathbb{R} \mid f \text{ is order-preserving}\}$.

Definition

An algebra A in $\mathbb{ISP}(L)$ is said to be *finitely* L-valued if for each $a \in A$ the set

 ${h(a): h: \mathbf{A} \to \mathbf{L} \text{ homomorphism}}$

is finite.

I.e., each element of **A**, thought of as a function $X \to \mathbf{L}$, has finite image. Example: For $\mathbf{L} = \langle \mathbb{R}; +, \vee, \wedge, 0, 1, -1 \rangle$, the following are finitely **L**-valued:

► R,

- any finite power \mathbb{R}^n of \mathbb{R} ,
- any subalgebra of a finite power \mathbb{R}^n of \mathbb{R} ,
- ▶ { $f : \mathbb{N} \to \mathbb{R} \mid f$ is eventually constant}.

Hypotheses on **L** (think of 2, or [0, 1], or \mathbb{R}):

- 1. L has a majority term. (E.g.: L has a lattice reduct.)
- (L is "indecomposable":) L is hereditarily finitely subdirectly irreducible, i.e. every subalgebra of L is finitely subdirectly irreducible. (E.g.: every subalgebra of L is simple, and L has two distinct constants.)
- 3. (L is "rigid":) For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

Theorem (Main result)

Suppose L satisifes (1–3). The category of finitely L-valued algebras in $\mathbb{ISP}(L)$ (and homomorphisms) is dually equivalent to the category of Priestley L-spaces (and appropriate morphisms).

Thank you!