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Outline

1. We provide an abstraction of [0, 1] with the Euclidean topology and

the “denominator map” [0, 1] → N.

2. Application: representation of certain ordered groups.
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Part 1:

An abstraction of the unit interval with

denominators
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den : [0, 1] −→ N

x 7−→ den(x) :=

{
q if x = p

q ∈ Q,with p and q coprime,

0 if x is irrational.

It is convenient to identify the codomain N of den with the set N of

topologically closed additive subgroups of R containing 1:

N −→ N

n 7−→

{
1
nZ if n ̸= 0

R if n = 0.
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Then, we identify the denominator map den : [0, 1] → N with

[0, 1] −→ N

x −→ closure of the additive subgroup of R generated by 1 and x

=


1
qZ if x = p

q ∈ Q, with p and q coprime,

R if x is irrational.
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Closed subs. of [0, 1]κ = Comp. Hausd. spaces.

Closed subs. of [0, 1]κ, with denominators = ???
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den : [0, 1]2 −→ N

(x , y) 7−→ lcm(den(x),den(y)).

den

(
1

4
,

1

3

)
= 12;

den

(
2

5
,

3

5

)
= 5;

den

(
π

4
,

√
2

2

)
= 0;

den

(
2

3
,

√
2

2

)
= 0.

den : [0, 1]2 −→ N

(x , y) 7−→ closure of the subgroup of R generated by 1, x and y .
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We define a denominator for elements of [0, 1]κ:

den : [0, 1]κ −→ N

(xi )i∈κ 7−→ lcm({den(xi ) | i ∈ κ}).

den

(
1

4
,

3

4
,

1

4
,

3

4
, . . .

)
= 4;

den

(
1

3
,

1

2
,

1

3
,

1

2
, . . .

)
= 6;

den

(
π

4
,

1

2
,

1

2
,

1

2
,

1

2
, . . .

)
= 0;

den

(
1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . .

)
= 0; .R.

den : [0, 1]κ −→ N

(xi )i∈κ 7−→ closure of the subgr. of R generat. by 1 and all xi (i ∈ κ).
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How do topology and denominators interact in closed subspaces of

powers of [0, 1]?
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Definition

A compact a-Hausdorff a-space (for “compact arithmetically Hausdorff

arithmetic space”) is a pair (X , ζ) where X is a topological space and

ζ : X → N a function s.t.

1. (Arithmetic Continuity) For all n ∈ N \ {0},

{x ∈ X | ζ(x) divides n} is closed.

2. (Compactness) X is compact.

3. (Arithmetic Hausdorffness) For all x ̸= y ∈ X , there are disjoint

opens U ∋ x and V ∋ y s.t., for all t ∈ X \ (U ∪ V ), ζ(t) = 0.

X
U V

• x • y

ζ = 0
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([0, 1],den) is a compact a-Hausdorff a-space.

Also, any of its powers.
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Examples

Compact a-Hausdorff a-spaces?

✓ ✗

In the second example we do not have arithmetic continuity because the

set {x ∈ X | ζ(x) ⊆ Z} is not closed.
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Examples

Compact a-Hausdorff a-spaces?

✓ ✗

In the second example we do not have arithmetic Hausdorfness because

0, 1 ∈ [0, 1] cannot be separated by opens U and V so that ζ(x) = R for

all x ∈ [0, 1] \ (U ∪ V ).
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Main result (1/2)

Compact a-Hausdorff a-spaces are the closed subsets of power of [0, 1]:

Main result (1/2)

Let X be a topological space and ζ : X → N be a function. The following

are equivalent.

1. (X , ζ) is a compact a-Hausdorff a-space.

2. There are a cardinal κ and a closed C ⊆ [0, 1]κ such that

(X , ζ) ∼= (C ,den).

Main step needed in the proof: generalization of Urysohn’s lemma.
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Part 2:

Categorical duality with certain ordered groups
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We use compact a-Hausdorff a-spaces to give a representation of certain

ordered groups (in the form of a categorical duality).
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In the 30s and 40s, a series of papers

▶ [Gelfand and Kolmogorov, 1939],

▶ [Krein and Krein, 1940],

▶ [Kakutani, 1941],

▶ [Stone, 1941],

▶ [Yosida, 1941],

▶ [Gelfand and Neumark, 1943]

showed that various known mathematical structures can be represented

by compact Hausdorff spaces via a categorical dual equivalence.
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The common idea is to associate to a compact Hausdorff space X the set

C (X ,R) of continuous real-valued (or complex-valued) functions on X .

The mathematical structures used in these representation theorems

include rings, commutative C∗-algebras, Kakutani’s (M)-spaces, vector

lattices, divisible Abelian lattice-ordered groups.
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For our work, the most relevant structures are the ones used by Yosida:

vector lattices.

For the following definition, think of C (X ,R).

Definition (Riesz, 1928)

A vector lattice is a real vector space equipped with a lattice order with

the following properties.

1. (Translation invariance) If x ≤ y then x + z ≤ y + z .

2. (Positive Homogeneity) If x ≤ y then λx ≤ λy for any real scalar

λ ≥ 0.
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For Yosida’s duality a bit more structure is needed.

Definition

A metrically complete unital vector lattice is a vector lattice V equipped

with a designated element 1 ∈ V such that the following defines a

complete metric on V :

dist(v ,w) := inf {λ ∈ R≥0 | −λ1 ≤ v − w ≤ λ1},

Example: in C (X ,R), let 1 be the function X → R constantly equal to 1;

the corresponding metric is the uniform metric.
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Yosida proved that every metrically complete unital vector lattice is

isomorphic to C (X ,R) for a unique compact Hausdorff space X (up to

homeomorphism).

Theorem (Yosida duality, 1941)

The category of compact Hausdorff spaces is dually equivalent to the

category of metrically complete unital vector lattices.

One functor maps a compact Hausdorff space X to the metrically

complete unital vector lattice C (X ,R).
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In this work we extend Yosida’s duality by replacing the structure of a

vector space with the structure of an Abelian group (i.e. we lose

multiplication by real scalars).

Definition

An Abelian lattice-ordered group is an abelian group equipped with a

lattice order such that x ≤ y implies x + z ≤ y + z (translation

invariance).

Abelian lattice-ordered groups are widely used in the study of

MV-algebras, the algebraic semantics of  Lukasiewicz many-valued logic.
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Much of the theory of vector lattices goes through for Abelian

lattice-ordered groups.

Definition

A metrically complete unital Abelian lattice-ordered group is an Abelian

lattice-ordered group G equipped with a designated element 1 ∈ G such

that the following defines a complete metric on G :

dist(v ,w) := inf

{
p

q
∈ Q | p ≥ 0, q > 0, and p1 ≤ q(v − w) ≤ p1

}
.
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Functional representation

Theorem (Representation theorem, Goodearl & Handelman

1980)

▶ Let X be a compact Hausdorff space. For each x ∈ X , let Dx be

either Dx = R or Dx = 1
nZ (for some n ∈ N \ {0}). Then,{

f : X → R | f continuous, ∀x ∈ X f (x) ∈ Dx

}
is a metrically complete unital Abelian lattice-ordered group.

▶ Every metrically complete unital Abelian lattice-ordered group can

be represented in this way.
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Not a 1:1 correspondence

This is not a 1:1 correspondence; two “non-isomorphic labelled spaces”

may give isomorphic metrically complete unital Abelian lattice-ordered

groups.

In both cases{
f : X → R | f continuous, ∀x ∈ X f (x) ∈ Dx

}
=

= {f : X → Z | f is definitely constant}.
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Not a 1:1 correspondence

In both cases{
f : X → R | f continuous, ∀x ∈ X f (x) ∈ Dx

}
=

= {f : X → Z | f is constant} ∼= Z.
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Our aim

Our aim: make the Goodearl-Handelman representation into a

categorical duality.
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Compact a-Hausdorff a-spaces?

✓ ✗
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Compact a-Hausdorff a-spaces?

✓ ✗
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Main result

For every metrically complete unital Abelian lattice-ordered group G

there is a unique (up to iso) compact a-Hausdorff a-space

(X , ζ : X → N) such that G is isomorphic to

{f : X → R | f continuous, ∀x ∈ X f (x) ∈ ζ(x)} .

Theorem

The category of compact a-Hausdorff a-spaces is dually equivalent to

the category of metrically complete unital Abelian lattice-ordered

groups.

One functor maps X to

{f : X → R | f continuous, ∀x ∈ X f (x) ∈ ζ(x)}.
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Recap
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1. Compact a-Hausdorff a-spaces abstract [0, 1] with the Euclidean

topology and denominators.

2. Compact a-Hausdorff a-spaces are dual to metrically complete unital

Abelian lattice-ordered groups.

M. Abbadini, V. Marra, L. Spada. Stone-Gelfand duality for metrically complete

lattice-ordered groups. Preprint at arXiv:2210.15341, 2022.

Thank you!
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