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Stone duality

1936: Stone’s representation theorem for Boolean algebras:

Every Boolean algebra is isomorphic to a field of subsets of some set.

It connects syntax and semantics: each formula of classical propositional

logic is interpreted as a subset of the set of possible worlds, where

▶ logical “or” ↔ union of sets of worlds,

▶ logical “and” ↔ intersection,

▶ logical “negation” ↔ complementation.
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Given a Boolean algera B, Stone equips the set XB of homomorphisms

B→ 2 with an appropriate topology and shows

B ∼= {clopen (= closed + open) subsets of XB}.

One-to-one correspondence between Boolean algebras and Stone spaces

(a.k.a. profinite spaces or Boolean spaces).

Stone space := compact Hausdorff spaces where distinct points are

separated by a clopen (= closed and open) set.

E.g.: finite discrete spaces, one-point compactifications of discrete

spaces.
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Stone duality

In fact, Stone proved much more than a representation theorem: there is

a duality (= dual categorical equivalence) between the category of

Boolean algebras and the category of Stone spaces.

Bool ∼= Stoneop.

More information (quotient of algebras A↠ B)

=

Fewer possible worlds (inclusion of spaces XA ←↩ XB).

Less propositions (inclusion of algebras B ↪→ A)

=

Collapse of possible worlds (quotient of spaces XB ↞ XA).
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Some good things of Stone duality

Algebraic questions in Bool can be answered by translating them into

(often simpler) questions in Stone.

1. While a coproduct A + B of Boolean algebras is often difficult to

describe, its dual, XA+B, is simply the cartesian product XA × XB.

2. The free Boolean algebra (= Lindenbaum-Tarski algebras) on κ

generators is easily described via its dual: 2κ.

3. Congruences correspond to closed subspaces.

Example: a Boolean algebra of 2n elements has exactly 2n

congruences.
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Some good things of Stone duality

The duality is logarithmic: a product A× B of Boolean algebras

corresponds to a sum of the corresponding spaces: XA×B
∼= XA + XB.

For example, the dual of a Boolean algebra of 16 = 2× 2× 2× 2

elements is the discrete space of 4 = 1 + 1 + 1 + 1 elements.
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Priestley duality

[1969, Priestley]: the category of bounded distributive lattices is dually

equivalent to the category of Priestley spaces.

BDL ∼= Priestleyop.

Priestley space := Stone space equipped with a partial order such that if

x ≰ y then there is a clopen upset U such that x ∈ U and y /∈ U.

Every bounded distributive lattice is isomorphic to the lattice of clopen

upsets of a Priestley space.

Marco Abbadini Natural dualities 7 / 23



New classes of algebras

To study some nonclassical logics, new classes of algebras (other than

Boolean algebras) were introduced.

E.g.: Kleene (1938) introduced a three-valued logic which replaces {0, 1}
with {0,U, 1}. {0,U, 1} is an algebra in the signature {0, 1,∨,∧,¬}.

Kleene algebras := algebras of Kleene logic = algebras in the signature

{0, 1,∨,∧,¬} that satisfy each equation satisfied by {0,U, 1}:

▶ Bounded distributive lattices.

▶ (Double negation law:) ¬¬x = x .

▶ (De Morgan laws:) ¬(x ∧ y) = ¬x ∨ ¬y .

▶ x ∧ ¬x ≤ y ∨ ¬y .

In general, we do not have x ∧ ¬x = 0.
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Dualities for many of these classes of algebras were found.

Benefits similar to those for Stone duality apply:

▶ uniform representation,

▶ coproducts of algebras into products of spaces,

▶ free algebras have an easy dual description,

▶ congruences correspond to closed substructures,

▶ logarithmic property: XA×B
∼= XA + XB.
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These dualities follow a similar pattern: there is a special algebra

L

and the class of algebras of interest is

ISP(L) := {algebras isomorphic to a subalgebra of a power of L}.

i.e. the class of algebras A (in the same language of L) whose elements

are separated by homomorphisms from A to L.

Examples:

▶ Boolean algebras = ISP({0, 1}) (by the Ultrafilter lemma).

▶ Bounded distributive lattices = ISP({0, 1}).

▶ Kleene algebras = ISP({0,U, 1}).

Logical reading: L is the set of truth values.

Homming to L then gives the functor for the duality.
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Natural dualities := dualities induced by homming into a schizophrenic

object.

[Davey, 1978], [Davey, Werner, 1983], [Clark, Krauss, 1984]: formulate a

general theory to obtain natural dualities for ISP(L).

Davey & Werner (1983): duality for ISP(L) where L is a finite algebra

with a near unanimity term. (E.g.: L has a lattice reduct, i.e. L has two

terms ∨ and ∧ that satisfy the axioms of lattices.)

Example: for L = {0, 1} we get Stone/Priestley dualities.
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We present the restriction of this theory under some stronger hypotheses

on L:

0. L is finite.

1. L has a lattice reduct.

2. L has two distinct constants and every subalgebra of L is simple (i.e.

the only congruences of a subalgebra A are the diagonal and A×A).

3. For each subalgebra A of L, the inclusion A ↪→ L is the unique

homomorphism from A to L.
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Algebraic structure ←→ Space + constraints

An algebra in ISP(L) is represented via a

1. Stone space X , together with

2. a family of “at-most-binary constraints”, i.e., for each subset I ⊆ X

of cardinality ≤ 2, a subalgebra AI of LI .

satisfying certain compatibility conditions.

Space X +

constraints (AI )I
⇝

Algebra of continuous functions f : X → L (with

L discrete) satisfying all constraints, i.e. such

that, for all I ⊆ X with |I | ≤ 2, f |I ∈ AI .
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1. Stone duality for Boolean algebras (1936): L = {0, 1}.
Space: a Stone space.

Constraints: “none”, i.e. AI := {0, 1}I .
Boolean algebra ∼= algebra of continuous functions from a Stone

space X to {0, 1} with pointwise operations.

2. Priestley duality (1969): L = {0, 1}.
Space: a Stone space.

Constraints: the order, i.e. AI := {order-preserving I → {0, 1}}.
Bounded distributive lattice ∼= algebra of order-preserving

continuous functions from a Priestley space X to {0 < 1}.
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“I ⊆2 X” means “I is a subset of X of cardinality at most 2”.

Definition

A Priestley L-space consists of a Stone space X and, for each I ⊆2 X , of

a subalgebra AI of LI s.t.

1. (Separation) For all distinct x , y ∈ X , there is f ∈ A{x,y} s.t.

f (x) ̸= f (y).

2. (Local-to-global extension) For all I ⊆2 X , every f : I → L in AI

has a continuous extension g : X → L (with L discrete) that satisfies

all constraints, i.e., s.t., for all J ⊆2 X , g |J ∈ AJ .

Separation ↭ Anti-symmetry of the order.

Local-to-global extension ↭ for x ≰ y there is a clopen

upset U s.t. x ∈ U, y /∈ U.

Marco Abbadini Natural dualities 15 / 23



The algebra associated to a Priestley L-space is

{f : X → L | f is continuous and satisfies all constraints}.
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K := Kleene algebra {0,U, 1}.

Example of a K-Priestley space:

▶ αN := one-point compactification of the discrete space N.

▶ Set A∅ := K∅.

▶ For every x ∈ αN set A{x} := K{x}.

▶ For distinct x , y ∈ N, set A{x,y} := K{x,y}.

▶ For x ∈ N set

A{x,∞} := {f : {x ,∞} → K | f (∞) = U or f ≡ 0 or f ≡ 1} .

Dual Kleene algebra: algebra of functions f : αN→ K such that f ≡ 0 or

f ≡ 1 or (f (∞) = U and f (x) = U for all but finitely many x ∈ N).
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Duality theorem

Hypotheses on the generating algebra L:

0. L is finite.

1. L has a lattice reduct.

2. L has two distinct constants and every subalgebra of L is simple.

3. For each subalgebra A of L, the inclusion A ↪→ L is the unique

homomorphism from A to L.

Theorem

Suppose L satisifes (0–3). The following categories are dually equivalent.

▶ ISP(L) (with homomorphisms as morphisms)

▶ the category of Priestley L-spaces (and appropriate morphisms).
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Our generalisation
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Our main result: we give an analagous duality, where the generating

algebra L is allowed to be infinite.

Our motivation:

▶ representation of some MV-algebras, i.e. the algebras of  Lukasiewicz

many-valued logic: {0, 1} is replaced by [0, 1].

▶ representation of some positive MV-algebras, i.e. the negation-free

version of MV-algebras.
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Hypotheses on L:

0. L is finite.

1. L has a lattice reduct, i.e. L has two terms ∨ and ∧ that satisfy the

axioms of lattices.

2. L has two distinct constants and every subalgebra of L is simple (i.e.

the only congruences of a subalgebra A are the diagonal and A×A).

3. For each subalgebra A of L, the inclusion A ↪→ L is the unique

homomorphism from A to L.
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Theorem (Main result)

Suppose L satisifes (1–3). The following categories are dually equivalent:

▶ the category of algebras A ∈ ISP(L) s.t. for each a ∈ A the set

{h(a) : h : A→ L homomorphism}

is finite.

▶ the category of Priestley L-spaces.

An equivalent characterization for the algebras: there is a set X and an

embedding of A into the algebra of functions X → L with finite image.

E.g.: any finite product of L, and any subalgebra of it.
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Thank you!
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