Natural dualities

Marco Abbadini. University of Birmingham, UK.

Joint work (in progress) with Adam Přenosil.

Southern and Midlands Logic Seminar, 13 December 2023.

1936: Stone's representation theorem for Boolean algebras:

Every Boolean algebra is isomorphic to a field of subsets of some set.

It connects syntax and semantics: each formula of classical propositional logic is interpreted as a subset of the set of possible worlds, where

- ▶ logical "or" \leftrightarrow union of sets of worlds,
- logical "and" \leftrightarrow intersection,
- ▶ logical "negation" \leftrightarrow complementation.

Given a Boolean algera B, Stone equips the set X_B of homomorphisms $B\to 2$ with an appropriate topology and shows

 $\mathbf{B} \cong \{\text{clopen} (= \text{closed} + \text{open}) \text{ subsets of } X_{\mathbf{B}} \}.$

One-to-one correspondence between Boolean algebras and Stone spaces (a.k.a. profinite spaces or Boolean spaces).

Stone space := compact Hausdorff spaces where distinct points are separated by a clopen (= closed and open) set.

E.g.: finite discrete spaces, one-point compactifications of discrete spaces.

Stone duality

In fact, Stone proved much more than a representation theorem: there is a duality (= dual categorical equivalence) between the category of Boolean algebras and the category of Stone spaces.

 $\mathsf{Bool} \cong \mathsf{Stone}^{\mathrm{op}}.$

More information (quotient of algebras $A \rightarrow B$) = Fewer possible worlds (inclusion of spaces $X_A \leftarrow X_B$).

Less propositions (inclusion of algebras $B \hookrightarrow A$) =

Collapse of possible worlds (quotient of spaces $X_B \leftarrow X_A$).

Algebraic questions in Bool can be answered by translating them into (often simpler) questions in Stone.

- 1. While a coproduct $\mathbf{A} + \mathbf{B}$ of Boolean algebras is often difficult to describe, its dual, $X_{\mathbf{A}+\mathbf{B}}$, is simply the cartesian product $X_{\mathbf{A}} \times X_{\mathbf{B}}$.
- 2. The free Boolean algebra (= Lindenbaum-Tarski algebras) on κ generators is easily described via its dual: 2^{κ} .
- Congruences correspond to closed subspaces.
 Example: a Boolean algebra of 2ⁿ elements has exactly 2ⁿ congruences.

The duality is logarithmic: a product $\mathbf{A} \times \mathbf{B}$ of Boolean algebras corresponds to a sum of the corresponding spaces: $X_{\mathbf{A} \times \mathbf{B}} \cong X_{\mathbf{A}} + X_{\mathbf{B}}$.

For example, the dual of a Boolean algebra of $16 = 2 \times 2 \times 2 \times 2$ elements is the discrete space of 4 = 1 + 1 + 1 + 1 elements. [1969, Priestley]: the category of bounded distributive lattices is dually equivalent to the category of Priestley spaces.

 $\mathsf{BDL} \cong \mathsf{Priestley}^{\mathrm{op}}$.

Priestley space := Stone space equipped with a partial order such that if $x \nleq y$ then there is a clopen upset U such that $x \in U$ and $y \notin U$.

Every bounded distributive lattice is isomorphic to the lattice of clopen upsets of a Priestley space.

To study some nonclassical logics, new classes of algebras (other than Boolean algebras) were introduced.

E.g.: Kleene (1938) introduced a three-valued logic which replaces $\{0, 1\}$ with $\{0, U, 1\}$. $\{0, U, 1\}$ is an algebra in the signature $\{0, 1, \lor, \land, \neg\}$.

Kleene algebras := algebras of Kleene logic = algebras in the signature $\{0, 1, \lor, \land, \neg\}$ that satisfy each equation satisfied by $\{0, U, 1\}$:

- Bounded distributive lattices.
- (Double negation law:) $\neg \neg x = x$.
- (De Morgan laws:) $\neg(x \land y) = \neg x \lor \neg y$.

$$x \wedge \neg x \leq y \vee \neg y.$$

In general, we do *not* have $x \land \neg x = 0$.

Dualities for many of these classes of algebras were found.

Benefits similar to those for Stone duality apply:

- uniform representation,
- coproducts of algebras into products of spaces,
- free algebras have an easy dual description,
- congruences correspond to closed substructures,
- logarithmic property: $X_{\mathbf{A}\times\mathbf{B}} \cong X_{\mathbf{A}} + X_{\mathbf{B}}$.

These dualities follow a similar pattern: there is a special algebra

L

and the class of algebras of interest is

 $\mathbb{ISP}(L) \coloneqq \{ \text{algebras isomorphic to a subalgebra of a power of } L \}.$

i.e. the class of algebras ${\bf A}$ (in the same language of ${\bf L})$ whose elements are separated by homomorphisms from ${\bf A}$ to ${\bf L}.$

Examples:

- Boolean algebras = $\mathbb{ISP}(\{0,1\})$ (by the Ultrafilter lemma).
- Bounded distributive lattices = $\mathbb{ISP}(\{0,1\})$.
- Kleene algebras = $\mathbb{ISP}(\{0, U, 1\})$.

Logical reading: L is the set of truth values.

Homming to L then gives the functor for the duality.

Natural dualities := dualities induced by homming into a schizophrenic object.

[Davey, 1978], [Davey, Werner, 1983], [Clark, Krauss, 1984]: formulate a general theory to obtain natural dualities for $\mathbb{ISP}(L)$.

Davey & Werner (1983): duality for $\mathbb{ISP}(L)$ where L is a finite algebra with a near unanimity term. (E.g.: L has a lattice reduct, i.e. L has two terms \vee and \wedge that satisfy the axioms of lattices.)

Example: for $\textbf{L}=\{0,1\}$ we get Stone/Priestley dualities.

We present the restriction of this theory under some stronger hypotheses on $\ensuremath{\textbf{L}}$:

- 0. L is finite.
- 1. L has a lattice reduct.
- 2. L has two distinct constants and every subalgebra of L is simple (i.e. the only congruences of a subalgebra A are the diagonal and $A \times A$).
- 3. For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

An algebra in $\mathbb{ISP}(L)$ is represented via a

- 1. Stone space X, together with
- a family of "at-most-binary constraints", i.e., for each subset I ⊆ X of cardinality ≤ 2, a subalgebra A_I of L^I.

satisfying certain compatibility conditions.

Space X +constraints $(\mathbf{A}_I)_I$ Algebra of continuous functions $f: X \to \mathbf{L}$ (with \rightsquigarrow **L** discrete) satisfying all constraints, i.e. such that, for all $I \subseteq X$ with $|I| \le 2$, $f|_I \in \mathbf{A}_I$.

1. Stone duality for Boolean algebras (1936): $L = \{0, 1\}$. Space: a Stone space.

Constraints: "none", i.e. $\mathbf{A}_I \coloneqq \{0, 1\}^I$.

Boolean algebra \cong algebra of continuous functions from a Stone space X to $\{0,1\}$ with pointwise operations.

2. Priestley duality (1969): $\mathbf{L} = \{0, 1\}$.

Space: a Stone space.

Constraints: the order, i.e. $\mathbf{A}_I := \{ \text{order-preserving } I \rightarrow \{0, 1\} \}.$

Bounded distributive lattice \cong algebra of order-preserving continuous functions from a Priestley space X to $\{0 < 1\}$.

" $I \subseteq_2 X$ " means "I is a subset of X of cardinality at most 2".

Definition

A Priestley L-space consists of a Stone space X and, for each $I \subseteq_2 X$, of a subalgebra A_I of L^I s.t.

- 1. (Separation) For all distinct $x, y \in X$, there is $f \in \mathbf{A}_{\{x,y\}}$ s.t. $f(x) \neq f(y)$.
- (Local-to-global extension) For all I ⊆₂ X, every f : I → L in A₁ has a continuous extension g : X → L (with L discrete) that satisfies all constraints, i.e., s.t., for all J ⊆₂ X, g|_J ∈ A_J.

Separation	\longleftrightarrow	Anti-symmetry of the order.
Local-to-global extension	\longleftrightarrow	for $x \nleq y$ there is a clopen
		upset U s.t. $x \in U$, $y \notin U$.

The algebra associated to a Priestley $\ensuremath{\textbf{L}}\xspace$ is

 $\{f: X \to \mathbf{L} \mid f \text{ is continuous and satisfies all constraints}\}.$

 $\mathbf{K} := \mathsf{K}\mathsf{leene} \; \mathsf{algebra} \; \{0, U, 1\}.$

Example of a K-Priestley space:

• $\alpha \mathbb{N} :=$ one-point compactification of the discrete space \mathbb{N} .

 $\blacktriangleright \text{ Set } \mathbf{A}_{\varnothing} \coloneqq \mathbf{K}^{\varnothing}.$

- For every $x \in \alpha \mathbb{N}$ set $\mathbf{A}_{\{x\}} := \mathbf{K}^{\{x\}}$.
- ▶ For distinct $x, y \in \mathbb{N}$, set $\mathbf{A}_{\{x,y\}} \coloneqq \mathbf{K}^{\{x,y\}}$.

For $x \in \mathbb{N}$ set

$$\mathbf{A}_{\{x,\infty\}} \coloneqq \{f \colon \{x,\infty\} \to \mathbf{K} \mid f(\infty) = U \text{ or } f \equiv 0 \text{ or } f \equiv 1\}.$$

Dual Kleene algebra: algebra of functions $f : \alpha \mathbb{N} \to \mathbf{K}$ such that $f \equiv 0$ or $f \equiv 1$ or $(f(\infty) = U$ and f(x) = U for all but finitely many $x \in \mathbb{N}$).

Hypotheses on the generating algebra L:

- 0. L is finite.
- 1. L has a lattice reduct.
- 2. L has two distinct constants and every subalgebra of L is simple.
- 3. For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

Theorem

Suppose L satisifes (0–3). The following categories are dually equivalent.

- ▶ ISP(L) (with homomorphisms as morphisms)
- the category of Priestley L-spaces (and appropriate morphisms).

Our generalisation

Our main result: we give an analagous duality, where the generating algebra ${\bm L}$ is allowed to be infinite.

Our motivation:

- representation of some *MV-algebras*, i.e. the algebras of Łukasiewicz many-valued logic: {0,1} is replaced by [0,1].
- representation of some *positive MV-algebras*, i.e. the negation-free version of MV-algebras.

Hypotheses on L:

- 0. L is finite.
- 1. L has a lattice reduct, i.e. L has two terms \lor and \land that satisfy the axioms of lattices.
- 2. L has two distinct constants and every subalgebra of L is simple (i.e. the only congruences of a subalgebra A are the diagonal and $A \times A$).
- 3. For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

Theorem (Main result)

Suppose L satisifes (1–3). The following categories are dually equivalent:

▶ the category of algebras $A \in ISP(L)$ s.t. for each $a \in A$ the set

$${h(a): h: \mathbf{A} \rightarrow \mathbf{L} \text{ homomorphism}}$$

is finite.

the category of Priestley L-spaces.

An equivalent characterization for the algebras: there is a set X and an embedding of **A** into the algebra of functions $X \rightarrow \mathbf{L}$ with finite image.

E.g.: any finite product of $\boldsymbol{\mathsf{L}},$ and any subalgebra of it.

Thank you!