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Stone duality

1936: Stone’s representation theorem for Boolean algebras:

Every Boolean algebra ⟨B;∨,∧, 0, 1,¬⟩ is isomorphic to a field

⟨A;∪,∩,∅,X ,X \ (−)⟩ of subsets of some set X .
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Stone gave a uniform way to represent each Boolean algebra as a field of

sets: for a Boolean algebra B, Stone constructed a topological space XB,

and

B ∼= {clopen (= closed + open) subsets of XB}
∼= {f : XB → {0, 1} | f is continuous}.

This gives a 1:1 correspondence between Boolean algebras and Stone

spaces (a.k.a. profinite spaces or Boolean spaces).

Stone space := compact Hausdorff spaces where clopens separate points.

E.g.: finite discrete spaces, one-point compactifications of discrete

spaces.
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Stone duality

In fact, Stone proved much more than a representation theorem:

Bool ∼= Stoneop.

Homomorphisms A→ B of Boolean algebras correspond to continuous

functions XB → XA.
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Some good things of Stone duality

Algebraic questions in Bool can be answered by translating them into

(often simpler) questions in Stone.

1. While a coproduct A + B of Boolean algebras is often difficult to

describe, its dual, XA+B, is simply the cartesian product XA × XB.

2. The free Boolean algebra (= Lindenbaum-Tarski algebra) on κ

generators has a simple dual description: 2κ.

3. Congruences on a Boolean algebra dually correspond to closed

subspaces.

4. The duality is “logarithmic”: a product A× B of Boolean algebras

corresponds to a sum of the corresponding spaces: XA×B
∼= XA +XB.

For example, the dual of a Boolean algebra of

64 = 2× 2× 2× 2× 2× 2 elements is the discrete space of

6 = 1 + 1 + 1 + 1 + 1 + 1 elements.
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Priestley duality

[1969, Priestley]: the category of bounded distributive lattices

⟨B;∨,∧, 0, 1⟩ is dually equivalent to the category of Priestley spaces.

BDL ∼= Priestleyop.

Priestley space := Stone space equipped with a partial order such that

if x ≰ y then there is a clopen upset U such that x ∈ U and y /∈ U.

Every bounded distributive lattice is isomorphic to the lattice of clopen

upsets of a Priestley space X . Equivalently, to the lattice of

order-preserving continuous functions from X to {0, 1}.
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New classes of algebras

Dualities for various other classes of algebras (usually stemming from

nonclassical logic) were found: distributive lattices, semilattices with 1

(Hofmann-Mislove-Stralka duality), relative Stone algebras, de Morgan

algebras, median algebras, Stone algebras, double Stone algebras, Kleene

algebras.

Benefits similar to those for Stone duality apply.
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These dualities follow a similar pattern: there is a “special” algebra L

(for logics, L is the algebra of truth values) and a duality is given for

ISP(L).

Examples:

▶ Boolean algebras = ISP({0, 1}) (by the Ultrafilter Lemma).

▶ Bounded distributive lattices = ISP({0, 1}).
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Davey & Werner (1983) showed that many of these follow from a general

result: duality for ISP(L) where L is a finite algebra with a near

unanimity term. (E.g.: L has a lattice reduct.)

Example: for L = {0, 1} we get Stone/Priestley dualities.

These dualities are called “natural dualities”.
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We present the restriction of this theory under some stronger hypotheses

on L:

0. L is finite.

1. L has a majority term (e.g., L has a lattice reduct).

2. L is finitely subdirectly irreducible (e.g. L has two distinct constants

and every subalgebra of L is simple).

3. For each subalgebra A of L, the inclusion A ↪→ L is the unique

homomorphism from A to L.

For example, the Boolean algebra L = {0, 1}.
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Algebraic structure ←→ Space + constraints

An algebra in ISP(L) is represented via a

1. Stone space X , together with

2. a family of “at-most-binary constraints”, i.e., for each subset I ⊆ X

of cardinality ≤ 2, a subalgebra AI of LI .

satisfying certain compatibility conditions.

Space X +

constraints (AI )I
⇝

Algebra of continuous functions f : X → L

(with L topologically discrete) satisfying all con-

straints, i.e. such that, for all I ⊆ X with |I | ≤ 2,

f |I ∈ AI .
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1. Stone duality for Boolean algebras (1936): L = {0, 1}.
Space: a Stone space.

Constraints: “none”, i.e. AI := {0, 1}I .
Boolean algebra ∼= algebra of continuous functions from a Stone

space X to {0, 1} with pointwise operations.

2. Priestley duality (1969): L = {0, 1}.
Space: a Stone space.

Constraints: the order, i.e. AI := {order-preserving I → {0, 1}}.
Bounded distributive lattice ∼= algebra of order-preserving

continuous functions from a Priestley space X to {0 < 1}.
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“I ⊆2 X” means “I is a subset of X of cardinality at most 2”.

Definition

A Priestley L-space consists of a Stone space X and, for each I ⊆2 X , of

a subalgebra AI of LI s.t.

1. (Separation) For all distinct x , y ∈ X , there is f ∈ A{x,y} s.t.

f (x) ̸= f (y).

2. (Local-to-global extension) For all I ⊆2 X , every f : I → L in AI

has a continuous extension g : X → L (with L discrete) that satisfies

all constraints, i.e., s.t., for all J ⊆2 X , g |J ∈ AJ .

Separation ↭ Anti-symmetry of the order.

Local-to-global extension ↭ for x ≰ y there is a clopen

upset U s.t. x ∈ U, y /∈ U.
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The algebra associated to a Priestley L-space is

{f : X → L | f is continuous and satisfies all constraints}.
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Duality theorem

Hypotheses on the generating algebra L:

0. L is finite.

1. L has a majority term.

2. L is finitely subdirectly irreducible.

3. For each subalgebra A of L, the inclusion A ↪→ L is the unique

homomorphism from A to L.

Theorem

Suppose L satisifes (0–3). The following categories are dually equivalent.

▶ ISP(L) (with homomorphisms as morphisms)

▶ the category of Priestley L-spaces (and appropriate morphisms).

Marco Abbadini Natural dualities with an infinite dualizing object 15 / 20



Our generalisation
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Our main result: we give an analagous duality, where the generating

algebra L is allowed to be infinite.

Our motivation:

▶ representation of some MV-algebras, i.e. the algebras of  Lukasiewicz

many-valued logic: {0, 1} is replaced by [0, 1].

▶ representation of some positive MV-algebras, i.e. the negation-free

version of MV-algebras.
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Hypotheses on L:

0. L is finite.

1. L has a majority term.

2. L is finitely subdirectly irreducible.

3. For each subalgebra A of L, the inclusion A ↪→ L is the unique

homomorphism from A to L.
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Theorem (Main result)

Suppose L satisifes (1–3). The following categories are dually equivalent:

▶ the category of algebras A ∈ ISP(L) s.t. for each a ∈ A the set

{h(a) : h : A→ L homomorphism}

is finite.

▶ the category of Priestley L-spaces.

An equivalent characterization for the algebras: there is a set X and an

embedding of A into the algebra of functions X → L with finite image.

E.g.: any finite product of L, and any subalgebra of a finite product of L.

For L finite, this coincides with the theorem mentioned in the finite case.
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Thank you!
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