A duality for metrically complete lattice-ordered groups

Marco Abbadini

School of Computer Science, University of Birmingham, UK

Based on a joint work with V. Marra and L. Spada:

https://arxiv.org/abs/2210.15341

2024 North American Annual Meeting Iowa State University 15 May 2024

Representation theorem for Boolean algebras

Theorem (Stone, 1936)

Every Boolean algebra embeds into the power set $\mathcal{P}(X)$ of some set X.

Stone proved much more than a representation theorem: in modern terms,

Theorem (Stone, 1936)

The category of <u>Boolean algebras</u> and homomorphisms is dually equivalent to the category of Stone spaces and continuous functions.

Having a duality allows us to easily transfer problems from one side of the duality to the other.

For example, to count the number of quotients of a Boolean algebra, one can count the number of closed subspaces of the dual Stone space.

Classical propositional logic	Łukasiewicz propositional logic
Boolean algebras	MV-algebras
{0,1}	[0,1]

Some pleasant features of Stone duality for Boolean algebras are not available for the whole class of MV-algebras.

E.g.: while every Boolean algebra is an algebra of $\{0,1\}$ -valued functions (Stone, 1936), <u>not</u> every MV-algebra is an algebra of [0,1]-valued functions.

Thus, one looks for dualities for subclasses of MV-algebras.

We give a duality for a certain class of MV-algebras.

We do so by giving a duality for a certain class of *unital Abelian lattice-ordered groups*.

Theorem (Mundici, 1986)

The category of <u>MV-algebras</u> is equivalent to the category of <u>unital</u> Abelian ℓ -groups.

$\label{eq:mv-algebras} \begin{array}{l} \mathsf{MV}\text{-algebras} \longleftrightarrow \text{ unital Abelian lattice-ordered groups} \\ \\ [0,1] \longleftrightarrow \mathbb{R}. \end{array}$

Definition

An Abelian lattice-ordered group (Abelian ℓ -group, for short) is an abelian group with a lattice order s.t.

Translation invariance: $x \le y$ implies $x + z \le y + z$.

Example

▶
$$\mathbb{R}$$
, \mathbb{Q} , $\frac{1}{n}\mathbb{Z}$ $(n \in \mathbb{N}_{>0})$.

Given a topological space X,

$$C(X,\mathbb{R}) \coloneqq \{f \colon X \to \mathbb{R} \mid f \text{ is continuous}\}.$$

If X is a compact space, in the Abelian ℓ -group $C(X, \mathbb{R})$ the constant function 1 has a special property: every element is below a multiple of 1.

Definition

A strong order unit of an Abelian ℓ -group **G** is an element $1 \in \mathbf{G}$ such that for any x there is $n \in \mathbb{N}$ such that

$$x \leq \underbrace{1 + \cdots + 1}_{n \text{ times}}.$$

Definition

A *unital Abelian* ℓ *-group* is an Abelian ℓ *-*group with a designated strong order unit.

Example

Given a compact Hausdorff space X,

$$C(X, \mathbb{R}) := \{f : X \to \mathbb{R} \mid f \text{ is continuous}\},\$$

$$C(X, \mathbb{Q}) := \{f : X \to \mathbb{Q} \mid f \text{ is continuous}\},\$$

$$C\left(X, \frac{1}{n}\mathbb{Z}\right) := \left\{f : X \to \frac{1}{n}\mathbb{Z} \mid f \text{ is continuous}\right\},\$$

are unital Abelian ℓ -group.

We can also mix the values that the functions can take at different points...

Representation theorem

Goodearl & Handelman characterized the unital Abel. ℓ -groups arising as:

Let X be a compact Hausdorff space. For each $x \in X$, let $A_x \in \{\mathbb{R}\} \cup \{\frac{1}{n}\mathbb{Z} \mid n \in \mathbb{N}_{>0}\}$. The following is a unital Abelian ℓ -group:

 $\{f: X \to \mathbb{R} \mid f \text{ continuous and, for all } x \in X, f(x) \in A_x\}.$

Example

• If
$$A_x = \mathbb{R}$$
 for all $x \in X$, then we get $C(X, \mathbb{R})$.

• If
$$A_x = \frac{1}{2}\mathbb{Z}$$
 for all $x \in X$, then we get $C(X, \frac{1}{2}\mathbb{Z})$.

Theorem (Goodearl and Handelman, 1980)

The unital Abelian ℓ -groups arising in this way are precisely the **metrically complete** ones.

Marco Abbadini

Metrically complete unital Abelian *l*-groups

In $C(X, \mathbb{R})$, $C(X, \frac{1}{n}\mathbb{Z})$, ..., the sup metric is complete.

$$egin{aligned} &d_\infty(f,g) = \infig\{\lambda \in \mathbb{R}^+ \mid -\lambda \leq f-g \leq \lambdaig\} \ &= \infigg\{rac{p}{q} \in \mathbb{Q}^+ \mid -rac{p}{q} \leq f-g \leq rac{p}{q}igg\} \ &= \infigg\{rac{p}{q} \in \mathbb{Q}^+ \mid -p \leq q(f-g) \leq pigg\}. \end{aligned}$$

Definition

A unital Abelian *l*-group **G** is *metrically complete* if

$$d(v,w)\coloneqq \infigg\{rac{p}{q}\in \mathbb{Q}^+\mid -p1\leq q(v-w)\leq p1igg\}.$$

defines a complete metric $d : \mathbf{G} \times \mathbf{G} \to \mathbb{R}$.

Non-example: \mathbb{Q} .

Marco Abbadini

The result by Goodearl & Handelman is a representation theorem for metrically complete unital Abelian ℓ -groups.

They can be represented as

 $\{f: X \to \mathbb{R} \mid f \text{ continuous and, for all } x \in X, f(x) \in A_x\}$

for some compact Hausdorff space X and some family $A_x \in \{\mathbb{R}\} \cup \{\frac{1}{n}\mathbb{Z} \mid n \in \mathbb{N}_{>0}\}$ (for $x \in X$).

Our aim: make the Goodearl-Handelman representation into a **categorical duality**, so that we can transfer all problems that can be expressed in the categorical language.

Not a 1:1 correspondence

Goodearl & Handelman's representation is not a 1:1 correspondence.

In both cases, $C(X,\mathbb{Z}) \cong \mathbb{Z}$.

Remedy: Separation

For $x \neq y \in X$, there are disjoint open sets $U \ni x$ and $V \ni y$ s.t., for all $z \in X \setminus (U \cup V)$, $A_z = \mathbb{R}$.

Not a 1:1 correspondence

In both cases

$$\begin{split} & \left\{ f \colon X \to \mathbb{R} \mid f \text{ cont. and, for all } x \in X, \ f(x) \in A_x \right\} = \\ & = \left\{ f \colon X \to \frac{1}{2}\mathbb{Z} \mid f \text{ is eventually constant} \right\}. \end{split}$$

Remedy: Semicontinuity

For every $n \in \mathbb{N}_{>0}$, $\left\{ x \in X \mid A_x \subseteq \frac{1}{n}\mathbb{Z} \right\}$ is closed.

Definition

A normal a-space (for "arithmetically normal arithmetic space") is a compact Hausdorff space X equipped with a family $(A_x)_{x \in X}$ with $A_x \in \{\mathbb{R}\} \cup \left\{\frac{1}{n}\mathbb{Z} \mid n \in \mathbb{N}_{>0}\right\}$ such that

1. (Separation) For $x \neq y \in X$, there are disjoint open sets $U \ni x$ and $V \ni y$ s.t., for all $z \in X \setminus (U \cup V)$, $A_z = \mathbb{R}$.

2. (Semicontinuity) For every $n \in \mathbb{N}_{>0}$, $\left\{x \in X \mid A_x \subseteq \frac{1}{n}\mathbb{Z}\right\}$ is closed.

Main result

The category of **metrically complete unital Abelian** ℓ -groups (and homomorphisms) is dually equivalent to the category of **normal a-spaces** (and continuous "denominator-decreasing" maps).

Metric. compl. unital Ab. ℓ -groups \leftrightarrow "metrically complete" MV-algebras.

Corollary

The category of normal a-spaces is dually equivalent to the category of metrically complete MV-algebras.

Thank you!

M. Abbadini, V. Marra, L. Spada. Stone-Gelfand duality for metrically complete lattice-ordered groups. Preprint at arXiv:2210.15341.