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Kripke semantics connects modal logic with the Vietoris endofunctor.

T
Stone op BA

\_/
v K
Algebras for K = modal algebras.
Coalgebras for V = descriptive frames.

This is the coalgebraic approach to modal logic.
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1. Stone duality has a natural extension to closed relations [Celani, 2018].

2. Vietoris has a natural extension to closed relations [Goy, Petrisan,

Aiguier, 2021]! Which arised in studies of the usual Vietoris on functions.

3. We provide a description of the dual of VR.

Natural notions — hope for applications! Our application: a resolution
of an open problem on de Vries duality [Bezhanishvili, Bezhanishvili,
Harding, 2015], concerning the usual Vietoris on compact Hausdorff
spaces and continuous functions.
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Stone op BA
—_
Extended by Celani (2018) (see also Kurz, Moshier, Jung, 2023):

Stone op

closed relations subordinations

Closed relation R: X &~ Y is a subset R C X x Y that is closed;
equivalently, such that

> R|closed] is closed,

» R~ ![closed] is closed.
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Why we got into closed relations:

Every compact Hausdorff space X is a continuous image of a Stone space
(e.g., its Gleason cover). So it can be presented via

Stone space + closed equivalence relation.

Stone 5 G(X)3+——G(Y) ¢« Stone

| }
KHaus > X —F 5y € KHaus
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Dual of a closed relation:

)lg CIOE(X) For V € Clop(Y) and U € Clop(X):
R S
—1

v Cloo(¥) VSU < R7V]CU
Example:

X Clop(X)

E)

X Clop(X)
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Subordination := a relation S: A 9~ B such that

(\n/ a,-) S /m\ bj < Vi,j a; S bj.
j=1

i=1

Theorem (Celani, 2018)

Stone® (closed relations) is dual to BA® (subordinations).
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Definition (Vietoris hyperspace)

The Vietoris hyperspace V(X) of a Stone space X is the set of closed
subsets of X, equipped with the topology generated by the following
subsets of V(X), for U clopen of X:

QU ={KeV(X)|KnU # o},
OoU ={KeV(X)|KCU}

Vietoris functor on Stone:

Stone —~— Stone

X V(X)
"
% V(Y)
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Extension of V from Stone to Stone® [Goy, Petrisan, Aiguier, 2021]:

R R

R
Stone® — Stone

X V(X) (Egli-Milner:) For K € V(X) and L € V(Y),

T
v V(Y) K VR(R) L <

Vxe Kdyel: xRy,
VyeldxeK: xRy.

It restricts to the usual Vietoris functor on continuous functions.
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What is the dual of VR?
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VR StoneR — StoneR

On objects: the same as for the dual of V on Stone (Abramsky,
Johnstone, Kupke, Kurz, Venema, Vosmaer):

X V(X)

Stone duality

A K(A)

K(A) _ FI'eeBA({Daa O, | ac A})
{0 preserves finite meets, & = —0_}
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On morphisms:

X V(X)

b fro

Y V(Y)

B K(B) = Freega({0p,Op | b € B})/~
;[5 lKS(S)?

A K(A) = Freega({0,,<, | a € A})/~

We shall describe when an element a of K(A) is KS(S)-related with an
element 8 of K(B).
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Proposition

Given a Boolean algebra A. Every v € K(A) is (effectively) equal to
> (DNF) a finite join of elements of the form

Oa A A, ADp

with each a; < b;
» (CNF) a finite meet of elements of the form

<>C\/Dd1\/"'\/|:|dm

with each ¢ < d.
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A K(A)

fs K5(S)?

B K(B)
Enough to describe when
(Cay A=A, AOp)KS(S) (OcV Og V---VOqg,)

with a; < b and ¢ < d;.
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)><7b)>
IN

(With a; < b and ¢ < dj:)
(Cay Ao ANO,, AOp) < (OcVDOqg V---VOg,)
(i
(Fiai<c)or(3Fj:b<d).
Key idea: O-with-O or O-with-0. [Cederquist, Coquand, 1998]

E.g.: if A, B, C, D are clopens of a Stone space X with A C C and
B C D, then

CANOBCOCUOD <= ACCor BCD.
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A K(A)

b e

B K(B)
(With a; < b and ¢ < dj2)
(<>31 /\"'/\Oan /\Db) KS(S) (OCVDd1 V"'Vde)

i)
(FizaiSc)or(3j:bS d).

Key idea: <-with-& or O-with-0.
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Marco Abbadini

Theorem (A., Bezhanishvili, Carai, 2024)

The dual of the Vietoris endofunctor VR: Stone® — StoneR is the
following endofunctor K : BAS — BAS:

» On objects: it maps A to

K(A) = Freepa({Ja, ©a | 2 € A})
"~ {0 preserves finite meets, & = —0_}

» On morphisms: it maps a subordination S: A & B to the unique
subordination K3(S): K(A) & K(B) satisfying “C-with-& or
O-with-0".

“O-with-& or O-with-0": (With a; < b and ¢ < d:)
(Cay A=A, AOp)KS(S) (OcV Og V---VOqg,)

)
(Fi:aiSc)or(F:bSd).
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An application
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De Vries duality is a duality for compact Hausdorff spaces, which
associates to a compact Hausdorff space X the Boolean algebra of
regular opens, together with the binary relation < of well-insideness:
U<V < cl(U)C V.

Question (Bezhanishvili, Bezhanishvili, Harding, 2015)

What is the De Vries dual of the Vietoris endofunctor on compact
Hausdorff spaces?

We piggyback on the duality between VR: Stone® — Stone® and
KS: BA® — BA®.
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Theorem (A., Bezhanishvili, Carai, 2024)

The de Vries dual of the Vietoris endofunctor on KHaus is obtained by
applying K® (= the dual of VR: Stone® — Stone®), followed by a(n
appropriate) MacNeille completion.

Xo+—FR sy (B,<p) +———% (A, <4)
(K(B), K5(<5)) ——Ls (K(A), K(<4))
V(X) P, y(y) M(K(B), K5(~5)) " DMK (A), KS(<4))

where M is an appropriate MacNeille completion functor.
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Conclusions
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Key ideas

1. Beyond functions; closed relations between Stone spaces (+
subordinations between Boolean algebras).
Especially: in dualities between “KHaus”-like and
“lattice+proximity” -like structures.
(Scott, Vickers, Jung, Siinderhauf, Moshier, Kegelmann, Kurz, ...)

2. “O-with-& or O-with-0" (Cederquist, Coquand):

NCa | A0, <0V [ \/Og | & @itai<c)or (Fj:b<d)
i J

3. Our packaging of these ideas:

» Stone dual description of VR: StoneR — Stone®;
> de Vries dual description of V: KHaus — KHaus and for relations.

@ M. Abbadini, G. Bezhanishvili, L. Carai.
Vietoris endofunctor for closed relations and its de Vries dual.
Topology Proceedings, to appear. Available on arxiv:2308.16823.
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