Quantifier-free fragments and quantifier alternation depth in doctrines

Marco Abbadini

School of Computer Science, University of Birmingham, UK

Manchester, UK 9 October 2024

Based on a joint work with Francesca Guffanti

Algebraic logic: identifies logically equivalent formulas.

Examples:

- 1. given a classical propositional theory $\mathcal T$, the set of formulas modulo T-interprovability is a Boolean algebra: $x \vee \neg x = \top$, ...
- 2. intuitionistic propositional logic: Heyting algebras: $x \to x = \top$, ...

The algebras of logic forget some syntactic notions.

E.g,: in the Boolean algebra obtained from a classical propositional theory, we cannot distinguish the "pure propositional variables" from the other formulas obtained as Boolean combinations of them.

At times, syntactic information may come in handy: in this talk, I will present one way to talk about quantifier-freeness and quantifier-alternation depth of formulas in the algebras of classical first-order logic.

Aim: extend *step-by-step methods* (already used in algebras of propositional logics) to algebras of logics with quantifiers.

Goal: develop step-by-step methods for nested quantifiers in the algebras of first-order classical logic.

Algebras of first-order classical logic $=$ first-order Boolean doctrines (Lawvere, '60s).

For simplicity, we consider languages with only relational symbols (i.e. no function symbols), and mono-sorted.

Let T be a first-order theory in a purely relational language.

1. (Algebra of formulas in each context:) For each tuple $x = \langle x_1, \ldots, x_n \rangle$ of distinct variables (also called "context"), we have a Boolean algebra

LT ${}^{\mathcal{T}}(\underline{x})$

(LT stands for "Lindenbaum-Tarski algebra") obtained by modding the set of formulas with free (possibly dummy) variables x_1, \ldots, x_n by $\mathcal T$ -interprovability.

2. (Substitutions:) Given two contexts $($ = tuples of distinct variables) $x = \langle x_1, \ldots, x_n \rangle$ and $y = \langle y_1, \ldots, y_m \rangle$ and given a function

$$
\sigma\colon \{x_1,\ldots,x_n\}\to \{y_1,\ldots,y_m\},
$$

we have a function

$$
LT_{\sigma}^{\mathcal{T}}:LT^{\mathcal{T}}(\underline{x}) \longrightarrow LT^{\mathcal{T}}(\underline{y})
$$

$$
\alpha(\underline{x}) \longmapsto [\alpha(\underline{x}), x_i \mapsto \sigma(x_i)].
$$

3. (Quantifiers:) For all tuples of distinct variables \underline{x} and \underline{y} , we have functions

$$
LT^{\mathcal{T}}(\underline{x}, \underline{y}) \longrightarrow LT^{\mathcal{T}}(\underline{x})
$$

$$
\alpha(\underline{x}, \underline{y}) \longmapsto \forall \underline{y} \alpha(\underline{x}, \underline{y})
$$

and

$$
LT^{\mathcal{T}}(\underline{x}, \underline{y}) \longrightarrow LT^{\mathcal{T}}(\underline{x})
$$

$$
\alpha(\underline{x}, \underline{y}) \longmapsto \exists \underline{y} \, \alpha(\underline{x}, \underline{y}).
$$

The algebraic structure associated to the first-order theory $\mathcal T$ is captured by

1. (Algebra of formulas in each context:)

LT ${}^{\mathcal{T}}(\underline{x})$.

2. (Substitutions:)

$$
LT_{\sigma}^{\mathcal{T}}: LT^{\mathcal{T}}(\underline{x}) \longrightarrow LT^{\mathcal{T}}(\underline{y})
$$

$$
\alpha(\underline{x}) \longmapsto [\alpha(\underline{x}), x_i \mapsto \sigma(x_i)].
$$

3. (Quantifiers:)

$$
\forall \underline{y}, \exists \underline{y} \colon \textbf{LT}^{\mathcal{T}}(\underline{x},\underline{y}) \to \textbf{LT}^{\mathcal{T}}(\underline{x}).
$$

What are the properties satisfied by the structures arising in this way? Answer: first-order Boolean doctrines.

A first-order Boolean doctrine consists of

- 1. for each tuple x of distinct variables, a Boolean algebra $P(x)$ (interpretation: algebra of formulas with free variables in x)
- 2. for all tuples \underline{x} and \underline{y} of distinct variables and every function $\sigma: \{x_1, \ldots, x_n\} \to \{y_1, \ldots, y_m\}$, a Boolean homomorphism

$$
\mathbf{P}_{\sigma} \colon \mathbf{P}(\underline{x}) \to \mathbf{P}(\underline{y}),
$$

satisfying (as a family) functoriality: ${\sf P}_{\rm id} = {\rm id}$, ${\sf P}_{g \circ f} = {\sf P}_{g} \circ {\sf P}_{f}$. (interpretation: substitution)

3. for all tuples of distinct variables \underline{x} and y , a function

$$
\forall \underline{y} \colon \textbf{P}(\underline{x},\underline{y}) \to \textbf{P}(\underline{x})
$$

(from which the existential is definable) (interpretation: universal quantification)

satisfying the following properties:

1. Quantifiers are adjoint to dummization: for every $\alpha(\underline{x})$ and $\beta(\underline{x}, y)$,

 $\alpha(\underline{x}) \leq \forall y \beta(\underline{x}, y)$ in $\mathbf{P}(\underline{x}) \Longleftrightarrow \alpha(\underline{x}, y) \leq \beta(\underline{x}, y)$ in $\mathbf{P}(\underline{x}, y)$,

where $\alpha(\underline{x}, y)$ is $\alpha(x)$ with y dummy.

2. Beck-Chevalley (substitution commutes with quantification over disjoint sets of variables):

For every $\sigma: \{x_1, \ldots, x_n\} \to \{x'_1, \ldots, x'_m\}$, and $\alpha(\underline{x}, \underline{y})$,

$$
\mathbf{P}_{\sigma}(\forall \underline{y} \alpha(\underline{x}, \underline{y})) = \forall \underline{y} \, \mathbf{P}_{\sigma}(\alpha(\underline{x}, \underline{y})),
$$

i.e.

$$
[\forall \underline{y} \alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)] = \forall \underline{y} [\alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)].
$$

First-order Boolean doctrines are precisely the algebras of classical first-order logic.

First-order Boolean doctrines : Classical first-order logic = Boolean algebras : Classical propositional logic

First-order Boolean doctrines can be thought of as many-sorted algebras (one sort for each context), or certain functors.

First-order Boolean doctrines forget syntactic information such as what formulas are quantifier-free.

 $E.g.:$

- 1. theory of partial orders.
- 2. theory of partial orders with an additional unary relation symbol "min" and the axiom

$$
\forall x (min(x) \leftrightarrow (\forall y \, x \leq y)).
$$

The notion of quantifier-free formulas is not intrinsic in a first-order Boolean doctrine.

Given a first-order theory $\mathcal T$, inside its Lindenbaum-Tarski algebra $LT^{\mathcal T}$ lies the algebra of equivalence classes of quantifier-free formulas $\mathsf{LT}^\mathcal{T}_0$. $LT_0^{\mathcal{T}}$ is a Boolean doctrine.

A Boolean doctrine consists of

- 1. for each tuple x of distinct variables, a Boolean algebra $P(x)$ (interpretation: set of formulas with free variables in x)
- 2. for all tuples \underline{x} and y of distinct variables and every function $f: \{x_1, \ldots, x_n\} \rightarrow \{y_1, \ldots, y_m\}$, a Boolean homomorphism

$$
\mathbf{P}_{\sigma} \colon \mathbf{P}(\underline{x}) \to \mathbf{P}(\underline{y}),
$$

satisfying (as a family) functoriality: ${\sf P}_{\rm id} = {\rm id},\,{\sf P}_{g\circ f} = {\sf P}_{g}\circ{\sf P}_{f}.$ (interpretation: substitution)

Definition

A quantifier-free fragment of a first-order Boolean doctrine P is a Boolean subdoctrine of P that generates P.

Boolean subdoctrine: a subset of P closed under Boolean combinations and substitutions.

Generating: closing P_0 under quantifiers, Boolean combinations, quantifiers, Boolean combinations... gives the whole P.

Theorem

If P_0 is a quantifier-free fragment of a first-order Boolean doctrine P , then there is a theory T such that **P** is the Lindenbaum-Tarski algebra $\mathsf{LT}^\mathcal{T}$ of \mathcal{T} and P_0 consists precisely of (the equivalence classes of) quantifier-free formulas.

Once we have a quantifier-free fragment

 $P_0 \subseteq P$

we can stratify formulas by quantifier alternation depth $(=$ maximum depth of alternations of ∃ and ∀)

 $P_0 \subset P_1 \subset P_2 \subset \ldots P$

We next give an intrinsic axiomatization of the sequences

 $P_0 \subseteq P_1 \subseteq P_2 \subseteq \ldots$

of "formulas stratified by quantifier alternation depth".

A QA-stratified Boolean doctrine is a sequence of Boolean doctrines (recall that these have Boolean operations and substitutions, but not quantifiers)

$$
\mathsf{P}_0\leq \mathsf{P}_1\leq \mathsf{P}_2\leq \ldots
$$

equipped, for all \underline{x} , y, and every $n \in \mathbb{N}$, with a function

$$
\forall \underline{y} \colon \mathbf{P}_n(\underline{x}, \underline{y}) \longrightarrow \mathbf{P}_{n+1}(\underline{x})
$$

(interpretation: universal quantification) satisfying:

1. Quantifiers are adjoint to dummization:

for every $n \in \mathbb{N}$, $\alpha(\underline{x}) \in \mathbf{P}_{n+1}(\underline{x})$ and $\beta(\underline{x}, y) \in \mathbf{P}_n(\underline{x}, y)$:

 $\alpha(\mathbf{x}) \leq \forall y \beta(\mathbf{x}, y)$ in $\mathbf{P}_{n+1}(\mathbf{x}) \Longleftrightarrow \alpha(\mathbf{x}, y) \leq \beta(\mathbf{x}, y)$ in $\mathbf{P}_{n+1}(\mathbf{x}, y)$.

2. Beck-Chevalley (quantifiers commute with substitutions): For every $n \in \mathbb{N}$, $\sigma \colon \{x_1, \ldots, x_n\} \to \{x'_1, \ldots, x'_m\}$, and $\alpha(\underline{x}, \underline{y})$,

$$
[\forall \underline{y} \alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)]_{n+1} = \forall \underline{y} [\alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)]_n
$$

3. Generation:

For all *n* and <u>x</u>, the Boolean algebra $P_{n+1}(\underline{x})$ is generated by

 $\{\forall y \; \alpha(\underline{x}, y) \mid y \text{ tuple of distinct variables, } \alpha(\underline{x}, y) \in \mathbf{P}_n(\underline{x}, y)\}.$

Theorem

QA-stratified Boolean doctrines capture precisely (up to isomorphism) the sequences

LT $\mathcal{T}_0 \subseteq$ LT $\mathcal{T}_1 \subseteq$ LT $\mathcal{T}_2 \subseteq \ldots$

obtained from a first-order theory and stratifying the formulas by quantifier alternation depth.

Next question: for any $n \in \mathbb{N}$, what is the algebraic structure of the finite sequences of the form

$$
\mathbf{LT}_0^{\mathcal{T}} \subseteq \mathbf{LT}_1^{\mathcal{T}} \subseteq \mathbf{LT}_2^{\mathcal{T}} \cdots \subseteq \mathbf{LT}_n^{\mathcal{T}}
$$

arising from a first-order theory T ?

Conjecture: take the axioms of QA-stratified Boolean doctrine and consider only those not involving any element of $\mathsf{LT}_k^\mathcal{T}$ for $k>n$.

We did the easiest case: $n = 0$. This gives Boolean doctrines.

Theorem

Boolean doctrines are precisely the structures P_0 that appear in some QA -stratified Boolean doctrine (P_0, P_1, P_2, \ldots) .

Equivalently, they are precisely the structures that appear as quantifier-free fragments of some first-order Boolean doctrine.

The difficult direction says that, for every Boolean doctrine P_0 , there is a first-order theory T such that, for all x, $P_0(x)$ is the quotient of the set of quantifier-free formulas with free variables x modulo $\mathcal T$ -interprovability.

Idea: P_0 encodes a universal theory. That's the theory. In fact, this is the "free way" in which to obtain a QA-stratified Boolean doctrine $({\bf P}_0, {\bf P}_1, {\bf P}_2, \dots)$ from ${\bf P}_0$.

Theorem

The forgetful functor

first-order Boolean doctrines \longrightarrow Boolean doctrines

(which forgets quantifiers) has a left adjoint (which freely adds quantifiers).

Let \textbf{P}_0 be a Boolean doctrine \textbf{P}_0 , let \textbf{P}^{free} be the first-order Boolean doctrine obtained by freely adding quantifiers.

The comparison map

$$
\textbf{P}_0 \rightarrow \textbf{P}^{\text{free}}
$$

is injective and generating: $\, {\sf P}_{0}$ is a quantifier-free fragment of $\, {\sf P}^{\rm free} .$

Then one can stratify P^{free} based on quantifier-alternation depth.

$$
\textbf{P}_0 \hookrightarrow \textbf{P}_1^{\mathrm{free}} \hookrightarrow \textbf{P}_2^{\mathrm{free}} \hookrightarrow \ldots \text{ } \textbf{P}^{\mathrm{free}}
$$

where $\mathsf{P}^{\text{free}}_n$ collects the formulas of QAD \leq n.

We show how to explicitly construct ${\sf P}_1^{\rm free}$ from ${\sf P}_0.$ This is essentially a doctrinal version of Herbrand's theorem.

Theorem (Herbrand, 1930)

If $\mathcal T$ is a universal theory, and $\alpha(x)$ is quantifier-free, then

 $\vdash_{\mathcal{T}} \exists x \alpha(x)$

holds if and only if there is a finite sequence of term-definable constants c_1, \ldots, c_k such that

 $\vdash_{\mathcal{T}} \alpha(c_1) \vee \cdots \vee \alpha(c_k).$

This admits a slightly more general formulation that characterizes when a formula of quantifier alternation depth ≤ 1 entails another formula of quantifier alternation depth ≤ 1 modulo a universal theory.

We prove a doctrinal version of Herbrand's theorem.

Technical details: this is true in general, also when there are function symbols and multiple sorts. We only require the category of contexts to be small (\approx only a *set* of sorts), in order to guarantee that P^{free} and $\mathbf{P}_1^{\text{free}}$ exist. The same construction works also with equality.

Theorem (Doctrinal version of Herbrand's theorem for formulas with $QAD < 1$)

Let $\mathsf{P}\colon \mathsf{C}^\mathrm{op} \to \mathsf{BA}$ be a Boolean doctrine, with C small, let $\mathsf{P}^{\mathrm{free}}$ be its quantifier completion, let ${\sf P}_1^{\rm free}$ be the Boolean subdoctrine of ${\sf P}^{\rm free}$ of "formulas with $QAD \leq 1$ ". Then ... $J = way$ to transform inequalities between elements in $P_1^{\rm free}$ into equivalent existence of terms such that certain inequalities hold in P_0 .

This describes the algebra ${\sf P}_1^{\rm free}$ of formulas with quantifier alternation depth ≤ 1 freely constructed over P_0 .

Contributions:

- 1. We axiomatize what substructures of a given first-order Boolean doctrine can be "quantifier-free fragments".
- 2. We axiomatize the algebraic structure of the sequences $(\mathsf{LT}_0^\mathcal{T}, \mathsf{LT}_1^\mathcal{T}, \mathsf{LT}_2^\mathcal{T}, \dots)$ obtained from a first-order theory \mathcal{T} by stratifying by QAD the $\mathcal T$ -equivalence classes of formulas.
- 3. Boolean doctrines $=$ structures occurring as layer 0 in the sequences.
- 4. We obtain a doctrinal version of Herbrand's theorem for formulas with $QAD \leq 1$.

This describes how to freely construct the layer 1 (formulas with $QAD < 1$) given the layer 0 (quantifier-free formulas).

M. Abbadini, F. Guffanti. Quantifier-free formulas and quantifier alternation depth in doctrines. On arXiv.

Future work:

1. Axiomatize the finite sequences $(\mathsf{LT}_0^\mathcal{T}, \mathsf{LT}_1^\mathcal{T}, \ldots, \mathsf{LT}_n^\mathcal{T})$ obtained from a first-order theory T by stratifying by QAD the T -equivalence classes of formulas up to QAD n.

We have done: $n = 0$.

Enough: $n = 1$.

2. Show how to freely add a layer of QAD to one such sequence (P_0, \ldots, P_n) (without destroying the existing quantifiers).

We have done: $n = 0$.

Enough: $n = 1$.

I.e.: let T be a theory whose axioms are universal closures of formulas of $QAD \leq 1$. Give a criterion for when a given formula of QAD \leq 2 is provable from \mathcal{T} , in terms of \mathcal{T} -provability of formulas of $QAD < 1$.

Contributions:

- 1. Axiomatize "quantifier-free fragments".
- 2. Axiomatize the sequences $(\mathsf{LT}_0^\mathcal{T}, \mathsf{LT}_1^\mathcal{T}, \mathsf{LT}_2^\mathcal{T}, \ldots)$ obtained from a first-order theory T by stratifying by QAD the T -equivalence classes of formulas.
- 3. Boolean doctrines $=$ structures occurring as layer 0 in the sequences.
- 4. Doctrinal version of Herbrand's theorem for formulas with $QAD \leq 1$. This describes how to freely add the first layer of QAD to a Boolean doctrine.
- M. Abbadini, F. Guffanti. Quantifier-free formulas and quantifier alternation depth in doctrines. On arXiv.

Future work:

- 1. Axiomatize the finite sequences $(\mathsf{LT}_0^\mathcal{T}, \mathsf{LT}_1^\mathcal{T}, \ldots, \mathsf{LT}_n^\mathcal{T}).$
- 2. Describe how to freely add a layer of QAD to $(\mathbf{P}_0, \ldots, \mathbf{P}_n)$.

Thank you!