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Algebraic logic

Algebraic logic: identifies logically equivalent formulas.

Examples:

1. given a classical propositional theory 7T, the set of formulas modulo
T-interprovability is a Boolean algebra: xV -x=T, ...

2. intuitionistic propositional logic: Heyting algebras: x — x =T, ...
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The algebras of logic forget some syntactic notions.

E.g,: in the Boolean algebra obtained from a classical propositional
theory, we cannot distinguish the “pure propositional variables” from the
other formulas obtained as Boolean combinations of them.

At times, syntactic information may come in handy: in this talk, | will
present one way to talk about quantifier-freeness and
quantifier-alternation depth of formulas in the algebras of classical
first-order logic.

Aim: extend step-by-step methods (already used in algebras of
propositional logics) to algebras of logics with quantifiers.
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Goal: develop step-by-step methods for nested quantifiers in the algebras
of first-order classical logic.

Algebras of first-order classical logic = first-order Boolean doctrines
(Lawvere, '60s).
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For simplicity, we consider languages with only relational symbols (i.e. no
function symbols), and mono-sorted.
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Let 7 be a first-order theory in a purely relational language.

1. (Algebra of formulas in each context:) For each tuple
x = (x1,...,x%,) of distinct variables (also called “context"), we

have a Boolean algebra
LT (x)

(LT stands for “Lindenbaum-Tarski algebra”) obtained by modding
the set of formulas with free (possibly dummy) variables xi, ..., x,
by T-interprovability.

2. (Substitutions:) Given two contexts (= tuples of distinct variables)
x=(x1,..., %) and y = (y1,...,¥m) and given a function

o {xt, .y Xnt = Y1y Ymbs

we have a function

LT, LT (x) — LT (y)

a(x) — [a(x), xi = a(x;)].
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3. (Quantifiers:) For all tuples of distinct variables x and y, we have
functions

LT (x,y) — LT7 (x)
a(x,y) — Yy a(x,y)
and

LT (x,y) — LT ()

ax, y) — Jy a(x, y).
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The algebraic structure associated to the first-order theory 7T is captured
by

1. (Algebra of formulas in each context:)
LT (x).
2. (Substitutions:)
LT LT (x) — LT (y)
a(x) — [a(x), 5 = o ()l

3. (Quantifiers:)
Vy,3y: LT (x,y) — LT7 (x).
What are the properties satisfied by the structures arising in this way?

Answer: first-order Boolean doctrines.
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A first-order Boolean doctrine consists of

1. for each tuple x of distinct variables, a Boolean algebra P(x)
(interpretation: algebra of formulas with free variables in x)

2. for all tuples x and y of distinct variables and every function
o:{x1,...,xa} = {¥1,.-.,¥m}, a Boolean homomorphism

P,: P(x) — P(y),

satisfying (as a family) functoriality: Pig = id, Pgor = P4 o Py.
(interpretation: substitution)

3. for all tuples of distinct variables x and y, a function
Vy: P(x, X) — P(x)

(from which the existential is definable)
(interpretation: universal quantification)

satisfying the following properties:
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1. Quantifiers are adjoint to dummization:
for every a(x) and B(x, y),

a(x) < Vy B(x,y) in P(x) < a(x,y) < B(x,y) in P(x,y),

where a(x, y) is a(x) with y dummy.
2. Beck-Chevalley (substitution commutes with quantification over

disjoint sets of variables):
For every o: {x1,..., X%} = {x{,...,x,,}, and a(x,y),

PU(V)_/O‘(& }_/)) = V)_’ Pg(a(g,x)),

[Vy a(x, y), xi = o(x)] = Vy [a(x, y), xi = o (xi)].
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First-order Boolean doctrines are precisely the algebras of classical
first-order logic.

First-order Boolean doctrines :  Classical first-order logic

Boolean algebras :  Classical propositional logic

First-order Boolean doctrines can be thought of as many-sorted algebras
(one sort for each context), or certain functors.
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First-order Boolean doctrines forget syntactic information such as what
formulas are quantifier-free.

E.g.:

1. theory of partial orders.

2. theory of partial orders with an additional unary relation symbol
“min"” and the axiom

Vx (min(x) <> (Vy x < y)).

The notion of quantifier-free formulas is not intrinsic in a first-order
Boolean doctrine.
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Given a first-order theory T, inside its Lindenbaum-Tarski algebra LT
lies the algebra of equivalence classes of quantifier-free formulas LTg.

LT{ is a Boolean doctrine.
A Boolean doctrine consists of

1. for each tuple x of distinct variables, a Boolean algebra P(x)
(interpretation: set of formulas with free variables in x)

2. for all tuples x and y of distinct variables and every function
fi{x,....,xn} = {y1,...,¥m}, a Boolean homomorphism

P,: P(x) — P(y),

satisfying (as a family) functoriality: Piq =id, Pgor = Pg o Py.
(interpretation: substitution)
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Definition

A quantifier-free fragment of a first-order Boolean doctrine P is a
Boolean subdoctrine of P that generates P.

Boolean subdoctrine: a subset of P closed under Boolean combinations
and substitutions.

Generating: closing Py under quantifiers, Boolean combinations,
quantifiers, Boolean combinations... gives the whole P.
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Theorem

If Po is a quantifier-free fragment of a first-order Boolean doctrine P,
then there is a theory T such that P is the Lindenbaum-Tarski algebra
LT” of T and Py consists precisely of (the equivalence classes of)
quantifier-free formulas.
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Once we have a quantifier-free fragment
PoCP

we can stratify formulas by quantifier alternation depth (= maximum
depth of alternations of 3 and V)

PobCP;CPyC... P

We next give an intrinsic axiomatization of the sequences
PoCPiCPyC...

of “formulas stratified by quantifier alternation depth”.
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A QA-stratified Boolean doctrine is a sequence of Boolean doctrines
(recall that these have Boolean operations and substitutions, but not
quantifiers)

Po<P; <P,y <...

equipped, for all x, Y and every n € N, with a function
VX: Pn(ﬁvX) — PnJrl(K)

(interpretation: universal quantification) satisfying:
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1. Quantifiers are adjoint to dummization:
for every n € N, a(x) € P,1(x) and B(x, ) € Po(x, y):

a(x) <Vy B(x,y) in Ppiai(x) <= alx,y) < B(x,y) in Prii(x, y).

2. Beck-Chevalley (quantifiers commute with substitutions):
Forevery ne N, o: {x1,...,xa} = {x{,..., X}, and a(x,y),

[Vy a(x, y), xi = o(xi)]at1 = Vy [a(x, y), xi = 0(xi)]a

3. Generation:
For all n and x, the Boolean algebra P, 1(x) is generated by

{Vy a(x,y) | y tuple of distinct variables, a(x, y) € Pa(x,y)}.
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Theorem

QA-stratified Boolean doctrines capture precisely (up to isomorphism)
the sequences
LT CLT] CLT] C...

obtained from a first-order theory and stratifying the formulas by
quantifier alternation depth.
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Next question: for any n € N, what is the algebraic structure of the finite
sequences of the form

LT] CLT] CLT] --- CLT/]

arising from a first-order theory 77

Conjecture: take the axioms of QA-stratified Boolean doctrine and
consider only those not involving any element of LT[ for k > n.
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We did the easiest case: n = 0.

This gives Boolean doctrines.
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Theorem

Boolean doctrines are precisely the structures Py that appear in some
QA-stratified Boolean doctrine (P, P1,P5...).

Equivalently, they are precisely the structures that appear as
quantifier-free fragments of some first-order Boolean doctrine.

The difficult direction says that, for every Boolean doctrine Py, there is a
first-order theory T such that, for all x, Po(x) is the quotient of the set
of quantifier-free formulas with free variables x modulo 7T -interprovability.

Idea: Py encodes a universal theory. That's the theory. In fact, this is the
“free way" in which to obtain a QA-stratified Boolean doctrine
(Po, Pl) P2, - ) from Po.
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Theorem

The forgetful functor
first-order Boolean doctrines — Boolean doctrines

(which forgets quantifiers) has a left adjoint (which freely adds
quantifiers).

Let Py be a Boolean doctrine Py, let P be the first-order Boolean

doctrine obtained by freely adding quantifiers.

The comparison map
PO — Pfree

is injective and generating: Py is a quantifier-free fragment of Pfree.

Then one can stratify P™°° based on quantifier-alternation depth.

free free free
Po =P =Py — ... P

where P collects the formulas of QAD < n.
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We show how to explicitly construct Pi® from Py. This is essentially a
doctrinal version of Herbrand's theorem.
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Theorem (Herbrand, 1930)

If T is a universal theory, and a(x) is quantifier-free, then
Fr 3x a(x)

holds if and only if there is a finite sequence of term-definable constants
Ci,...,Ck such that

Fra(a) V-V oa(c).
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This admits a slightly more general formulation that characterizes when a
formula of quantifier alternation depth < 1 entails another formula of
quantifier alternation depth < 1 modulo a universal theory.
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We prove a doctrinal version of Herbrand’s theorem.

Technical details: this is true in general, also when there are function
symbols and multiple sorts. We only require the category of contexts to
be small (= only a set of sorts), in order to guarantee that P® and
Piree exist. The same construction works also with equality.

Theorem (Doctrinal version of Herbrand's theorem for

formulas with QAD < 1)

Let P: C°P — BA be a Boolean doctrine, with C small, let Pfre¢ pe its
quantifier completion, let P{”ee be the Boolean subdoctrine of Pre¢ of
“formulas with QAD < 1”. Then ... [ = way to transform inequalities
between elements in P into equivalent existence of terms such that
certain inequalities hold in Pg].

This describes the algebra P{¢ of formulas with quantifier alternation
depth <1 freely constructed over Py.
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Contributions:

1. We axiomatize what substructures of a given first-order Boolean
doctrine can be “quantifier-free fragments”.

2. We axiomatize the algebraic structure of the sequences
(LTS, LT],LT],...) obtained from a first-order theory T by
stratifying by QAD the T-equivalence classes of formulas.

3. Boolean doctrines = structures occurring as layer 0 in the sequences.

4. We obtain a doctrinal version of Herbrand’s theorem for formulas
with QAD < 1.
This describes how to freely construct the layer 1 (formulas with
QAD < 1) given the layer 0 (quantifier-free formulas).

@ M. Abbadini, F. Guffanti. Quantifier-free formulas and quantifier alternation
depth in doctrines. On arXiv.

Marco Abbadini Quantifier-free fragments and quantifier alternation depth in doctrines



Future work:

1. Axiomatize the finite sequences (LT] ,LT7,...,LT/) obtained from
a first-order theory 7 by stratifying by QAD the T-equivalence
classes of formulas up to QAD n.

We have done: n=0.
Enough: n=1.

2. Show how to freely add a layer of QAD to one such sequence
(Po,...,P,) (without destroying the existing quantifiers).
We have done: n=0.

Enough: n=1.

l.e.: let T be a theory whose axioms are universal closures of
formulas of QAD < 1. Give a criterion for when a given formula of
QAD < 2 is provable from T, in terms of T-provability of formulas
of QAD < 1.
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Contributions:

1. Axiomatize “quantifier-free fragments”.

2. Axiomatize the sequences (LTg , LT/ ,LT],...) obtained from a
first-order theory T by stratifying by QAD the T -equivalence classes
of formulas.

3. Boolean doctrines = structures occurring as layer 0 in the sequences.

4. Doctrinal version of Herbrand's theorem for formulas with QAD < 1.
This describes how to freely add the first layer of QAD to a Boolean
doctrine.

@ M. Abbadini, F. Guffanti. Quantifier-free formulas and quantifier alternation
depth in doctrines. On arXiv.

Future work:

1. Axiomatize the finite sequences (LTg ,LT7,...,LT/).
2. Describe how to freely add a layer of QAD to (Py,...,P,).

Thank you!
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