Quantifier-free fragments and quantifier alternation depth in doctrines

Marco Abbadini

School of Computer Science, University of Birmingham, UK

Manchester, UK 9 October 2024

Based on a joint work with Francesca Guffanti

Algebraic logic: identifies logically equivalent formulas.

Examples:

- 1. given a classical propositional theory \mathcal{T} , the set of formulas modulo \mathcal{T} -interprovability is a Boolean algebra: $x \lor \neg x = \top$, ...
- 2. intuitionistic propositional logic: Heyting algebras: $x \to x = \top$, ...

The algebras of logic forget some syntactic notions.

E.g,: in the Boolean algebra obtained from a classical propositional theory, we cannot distinguish the "pure propositional variables" from the other formulas obtained as Boolean combinations of them.

At times, syntactic information may come in handy: in this talk, I will present one way to talk about quantifier-freeness and quantifier-alternation depth of formulas in the algebras of classical first-order logic.

Aim: extend *step-by-step methods* (already used in algebras of propositional logics) to algebras of logics with quantifiers.

Goal: develop step-by-step methods for nested quantifiers in the algebras of first-order classical logic.

Algebras of first-order classical logic = *first-order Boolean doctrines* (Lawvere, '60s).

For simplicity, we consider languages with only relational symbols (i.e. no function symbols), and mono-sorted.

Let \mathcal{T} be a first-order theory in a purely relational language.

1. (Algebra of formulas in each context:) For each tuple $\underline{x} = \langle x_1, \ldots, x_n \rangle$ of distinct variables (also called "context"), we have a Boolean algebra

$\mathsf{LT}^{\mathcal{T}}(\underline{x})$

(LT stands for "Lindenbaum-Tarski algebra") obtained by modding the set of formulas with free (possibly dummy) variables x_1, \ldots, x_n by \mathcal{T} -interprovability.

2. (Substitutions:) Given two contexts (= tuples of distinct variables) $\underline{x} = \langle x_1, \dots, x_n \rangle$ and $\underline{y} = \langle y_1, \dots, y_m \rangle$ and given a function

$$\sigma\colon \{x_1,\ldots,x_n\}\to \{y_1,\ldots,y_m\},$$

we have a function

$$\mathbf{LT}_{\sigma}^{\mathcal{T}} \colon \mathbf{LT}^{\mathcal{T}}(\underline{x}) \longrightarrow \mathbf{LT}^{\mathcal{T}}(\underline{y})$$
$$\alpha(\underline{x}) \longmapsto [\alpha(\underline{x}), x_i \mapsto \sigma(x_i)].$$

3. (Quantifiers:) For all tuples of distinct variables \underline{x} and \underline{y} , we have functions

$$\mathsf{LT}^{\mathcal{T}}(\underline{x},\underline{y}) \longrightarrow \mathsf{LT}^{\mathcal{T}}(\underline{x})$$
$$\alpha(\underline{x},\underline{y}) \longmapsto \forall \underline{y} \ \alpha(\underline{x},\underline{y})$$

and

$$\mathsf{LT}^{\mathcal{T}}(\underline{x},\underline{y}) \longrightarrow \mathsf{LT}^{\mathcal{T}}(\underline{x})$$
$$\alpha(\underline{x},\underline{y}) \longmapsto \exists \underline{y} \ \alpha(\underline{x},\underline{y}).$$

The algebraic structure associated to the first-order theory $\ensuremath{\mathcal{T}}$ is captured by

1. (Algebra of formulas in each context:)

 $LT^{\mathcal{T}}(\underline{x}).$

2. (Substitutions:)

$$\mathbf{LT}_{\sigma}^{\mathcal{T}} \colon \mathbf{LT}^{\mathcal{T}}(\underline{x}) \longrightarrow \mathbf{LT}^{\mathcal{T}}(\underline{y})$$
$$\alpha(\underline{x}) \longmapsto [\alpha(\underline{x}), x_i \mapsto \sigma(x_i)].$$

3. (Quantifiers:)

$$\forall \underline{y}, \exists \underline{y} \colon \mathbf{LT}^{\mathcal{T}}(\underline{x}, \underline{y}) \to \mathbf{LT}^{\mathcal{T}}(\underline{x}).$$

What are the properties satisfied by the structures arising in this way? Answer: first-order Boolean doctrines. A first-order Boolean doctrine consists of

- for each tuple <u>x</u> of distinct variables, a Boolean algebra P(<u>x</u>) (interpretation: algebra of formulas with free variables in <u>x</u>)
- 2. for all tuples \underline{x} and \underline{y} of distinct variables and every function $\sigma: \{x_1, \ldots, x_n\} \rightarrow \{y_1, \ldots, y_m\}$, a Boolean homomorphism

$$\mathbf{P}_{\sigma} \colon \mathbf{P}(\underline{x}) \to \mathbf{P}(\underline{y}),$$

satisfying (as a family) functoriality: $\mathbf{P}_{id} = id$, $\mathbf{P}_{g \circ f} = \mathbf{P}_{g} \circ \mathbf{P}_{f}$. (interpretation: substitution)

3. for all tuples of distinct variables \underline{x} and y, a function

$$\forall \underline{y} \colon \mathbf{P}(\underline{x}, \underline{y}) \to \mathbf{P}(\underline{x})$$

(from which the existential is definable) (interpretation: universal quantification)

satisfying the following properties:

Marco Abbadini

1. Quantifiers are adjoint to dummization: for every $\alpha(\underline{x})$ and $\beta(\underline{x}, y)$,

 $\alpha(\underline{x}) \leq \forall \underline{y} \ \beta(\underline{x}, \underline{y}) \text{ in } \mathbf{P}(\underline{x}) \Longleftrightarrow \alpha(\underline{x}, \underline{y}) \leq \beta(\underline{x}, \underline{y}) \text{ in } \mathbf{P}(\underline{x}, \underline{y}),$

where $\alpha(\underline{x}, \underline{y})$ is $\alpha(x)$ with \underline{y} dummy.

 Beck-Chevalley (substitution commutes with quantification over disjoint sets of variables):

For every $\sigma \colon \{x_1, \ldots, x_n\} \to \{x'_1, \ldots, x'_m\}$, and $\alpha(\underline{x}, \underline{y})$,

$$\mathbf{P}_{\sigma}(\forall \underline{y} \, \alpha(\underline{x}, \underline{y})) = \forall \underline{y} \, \mathbf{P}_{\sigma}(\alpha(\underline{x}, \underline{y})),$$

i.e.

$$[\forall \underline{y} \, \alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)] = \forall \underline{y} \, [\alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)].$$

First-order Boolean doctrines are precisely the algebras of classical first-order logic.

First-order Boolean doctrines : Classical first-order logic = Boolean algebras : Classical propositional logic

First-order Boolean doctrines can be thought of as many-sorted algebras (one sort for each context), or certain functors.

First-order Boolean doctrines forget syntactic information such as what formulas are quantifier-free.

E.g.:

- 1. theory of partial orders.
- 2. theory of partial orders with an additional unary relation symbol "min" and the axiom

$$\forall x \, (\min(x) \leftrightarrow (\forall y \, x \leq y)).$$

The notion of quantifier-free formulas is *not intrinsic* in a first-order Boolean doctrine.

Given a first-order theory \mathcal{T} , inside its Lindenbaum-Tarski algebra $\mathbf{LT}^{\mathcal{T}}$ lies the algebra of equivalence classes of quantifier-free formulas $\mathbf{LT}_0^{\mathcal{T}}$. $\mathbf{LT}_0^{\mathcal{T}}$ is a Boolean doctrine.

A Boolean doctrine consists of

- 1. for each tuple <u>x</u> of distinct variables, a Boolean algebra $P(\underline{x})$ (interpretation: set of formulas with free variables in <u>x</u>)
- 2. for all tuples \underline{x} and \underline{y} of distinct variables and every function $f: \{x_1, \ldots, x_n\} \rightarrow \{y_1, \ldots, y_m\}$, a Boolean homomorphism

$$\mathbf{P}_{\sigma} \colon \mathbf{P}(\underline{x}) \to \mathbf{P}(\underline{y}),$$

satisfying (as a family) functoriality: $\mathbf{P}_{id} = id$, $\mathbf{P}_{g \circ f} = \mathbf{P}_{g} \circ \mathbf{P}_{f}$. (interpretation: substitution)

Definition

A *quantifier-free fragment* of a first-order Boolean doctrine P is a Boolean subdoctrine of P that generates P.

Boolean subdoctrine: a subset of ${\bf P}$ closed under Boolean combinations and substitutions.

Generating: closing \mathbf{P}_0 under quantifiers, Boolean combinations, quantifiers, Boolean combinations... gives the whole \mathbf{P} .

Theorem

If \mathbf{P}_0 is a quantifier-free fragment of a first-order Boolean doctrine \mathbf{P} , then there is a theory \mathcal{T} such that \mathbf{P} is the Lindenbaum-Tarski algebra $\mathbf{LT}^{\mathcal{T}}$ of \mathcal{T} and \mathbf{P}_0 consists precisely of (the equivalence classes of) quantifier-free formulas.

Once we have a quantifier-free fragment

$$\textbf{P}_0 \subseteq \textbf{P}$$

we can stratify formulas by quantifier alternation depth (= maximum depth of alternations of \exists and \forall)

 $\boldsymbol{\mathsf{P}}_0\subseteq\boldsymbol{\mathsf{P}}_1\subseteq\boldsymbol{\mathsf{P}}_2\subseteq\dots\ \boldsymbol{\mathsf{P}}$

We next give an intrinsic axiomatization of the sequences

 $\boldsymbol{\mathsf{P}}_0\subseteq \boldsymbol{\mathsf{P}}_1\subseteq \boldsymbol{\mathsf{P}}_2\subseteq \dots$

of "formulas stratified by quantifier alternation depth".

A *QA-stratified Boolean doctrine* is a sequence of Boolean doctrines (recall that these have Boolean operations and substitutions, but not quantifiers)

$$\mathbf{P}_0 \leq \mathbf{P}_1 \leq \mathbf{P}_2 \leq \dots$$

equipped, for all \underline{x} , y, and every $n \in \mathbb{N}$, with a function

$$\forall \underline{y} \colon \mathbf{P}_{\mathbf{n}}(\underline{x},\underline{y}) \longrightarrow \mathbf{P}_{\mathbf{n+1}}(\underline{x})$$

(interpretation: universal quantification) satisfying:

1. Quantifiers are adjoint to dummization:

for every $n \in \mathbb{N}$, $\alpha(\underline{x}) \in \mathbf{P}_{n+1}(\underline{x})$ and $\beta(\underline{x}, \underline{y}) \in \mathbf{P}_n(\underline{x}, \underline{y})$:

 $\alpha(\underline{x}) \leq \forall \underline{y} \, \beta(\underline{x}, \underline{y}) \text{ in } \mathbf{P}_{n+1}(\underline{x}) \Longleftrightarrow \alpha(\underline{x}, \underline{y}) \leq \beta(\underline{x}, \underline{y}) \text{ in } \mathbf{P}_{n+1}(\underline{x}, \underline{y}).$

2. Beck-Chevalley (quantifiers commute with substitutions): For every $n \in \mathbb{N}$, $\sigma: \{x_1, \ldots, x_n\} \rightarrow \{x'_1, \ldots, x'_m\}$, and $\alpha(\underline{x}, \underline{y})$,

$$[\forall \underline{y} \, \alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)]_{n+1} = \forall \underline{y} \, [\alpha(\underline{x}, \underline{y}), x_i \mapsto \sigma(x_i)]_n$$

3. Generation:

For all *n* and \underline{x} , the Boolean algebra $\mathbf{P}_{n+1}(\underline{x})$ is generated by

 $\{\forall \underline{y} \, \alpha(\underline{x}, \underline{y}) \mid \underline{y} \text{ tuple of distinct variables, } \alpha(\underline{x}, \underline{y}) \in \mathbf{P}_n(\underline{x}, \underline{y})\}.$

Theorem

QA-stratified Boolean doctrines capture precisely (up to isomorphism) the sequences

$$\mathsf{L} \mathsf{T}_0^{\mathcal{T}} \subseteq \mathsf{L} \mathsf{T}_1^{\mathcal{T}} \subseteq \mathsf{L} \mathsf{T}_2^{\mathcal{T}} \subseteq \dots$$

obtained from a first-order theory and stratifying the formulas by quantifier alternation depth.

Next question: for any $n \in \mathbb{N}$, what is the algebraic structure of the <u>finite</u> sequences of the form

$$\mathbf{LT}_0^{\mathcal{T}} \subseteq \mathbf{LT}_1^{\mathcal{T}} \subseteq \mathbf{LT}_2^{\mathcal{T}} \cdots \subseteq \mathbf{LT}_n^{\mathcal{T}}$$

arising from a first-order theory \mathcal{T} ?

Conjecture: take the axioms of QA-stratified Boolean doctrine and consider only those not involving any element of $\mathbf{LT}_k^{\mathcal{T}}$ for k > n.

We did the easiest case: n = 0. This gives Boolean doctrines.

Theorem

Boolean doctrines are precisely the structures P_0 that appear in some QA-stratified Boolean doctrine $(P_0, P_1, P_2...)$.

Equivalently, they are precisely the structures that appear as quantifier-free fragments of some first-order Boolean doctrine.

The difficult direction says that, for every Boolean doctrine \mathbf{P}_0 , there is a first-order theory \mathcal{T} such that, for all \underline{x} , $\mathbf{P}_0(\underline{x})$ is the quotient of the set of quantifier-free formulas with free variables \underline{x} modulo \mathcal{T} -interprovability.

Idea: \mathbf{P}_0 encodes a universal theory. That's the theory. In fact, this is the "free way" in which to obtain a QA-stratified Boolean doctrine $(\mathbf{P}_0, \mathbf{P}_1, \mathbf{P}_2, \dots)$ from \mathbf{P}_0 .

Theorem

The forgetful functor

first-order Boolean doctrines \longrightarrow Boolean doctrines

(which forgets quantifiers) has a left adjoint (which freely adds quantifiers).

Let P_0 be a Boolean doctrine P_0 , let $P^{\rm free}$ be the first-order Boolean doctrine obtained by freely adding quantifiers.

The comparison map

$${\boldsymbol{\mathsf{P}}}_0\to{\boldsymbol{\mathsf{P}}}^{\mathrm{free}}$$

is injective and generating: \boldsymbol{P}_0 is a quantifier-free fragment of $\boldsymbol{P}^{\rm free}.$

Then one can stratify $\mathbf{P}^{\mathrm{free}}$ based on quantifier-alternation depth.

$$P_0 \hookrightarrow P_1^{\mathrm{free}} \hookrightarrow P_2^{\mathrm{free}} \hookrightarrow \dots \ P^{\mathrm{free}}$$

where $\mathbf{P}_n^{\text{free}}$ collects the formulas of QAD $\leq n$.

We show how to explicitly construct $\bm{P}_1^{\rm free}$ from $\bm{P}_0.$ This is essentially a doctrinal version of Herbrand's theorem.

Theorem (Herbrand, 1930)

If \mathcal{T} is a universal theory, and $\alpha(x)$ is quantifier-free, then

 $\vdash_{\mathcal{T}} \exists x \, \alpha(x)$

holds if and only if there is a finite sequence of term-definable constants c_1, \ldots, c_k such that

 $\vdash_{\mathcal{T}} \alpha(c_1) \lor \cdots \lor \alpha(c_k).$

This admits a slightly more general formulation that characterizes when a formula of quantifier alternation depth ≤ 1 entails another formula of quantifier alternation depth ≤ 1 modulo a universal theory.

We prove a doctrinal version of Herbrand's theorem.

Technical details: this is true in general, also when there are function symbols and multiple sorts. We only require the category of contexts to be small (\approx only a *set* of sorts), in order to guarantee that $\mathbf{P}^{\rm free}$ and $\mathbf{P}_1^{\rm free}$ exist. The same construction works also with equality.

Theorem (Doctrinal version of Herbrand's theorem for formulas with $QAD \leq 1$)

Let $\mathbf{P} \colon C^{\mathrm{op}} \to BA$ be a Boolean doctrine, with C small, let $\mathbf{P}^{\mathrm{free}}$ be its quantifier completion, let $\mathbf{P}_1^{\mathrm{free}}$ be the Boolean subdoctrine of $\mathbf{P}^{\mathrm{free}}$ of "formulas with $QAD \leq 1$ ". Then ... [= way to transform inequalities between elements in $\mathbf{P}_1^{\mathrm{free}}$ into equivalent existence of terms such that certain inequalities hold in \mathbf{P}_0].

This describes the algebra $\mathbf{P}_1^{\mathrm{free}}$ of formulas with quantifier alternation depth ≤ 1 freely constructed over \mathbf{P}_0 .

Contributions:

- 1. We axiomatize what substructures of a given first-order Boolean doctrine can be "quantifier-free fragments".
- 2. We axiomatize the algebraic structure of the sequences $(\mathbf{LT}_0^{\mathcal{T}}, \mathbf{LT}_1^{\mathcal{T}}, \mathbf{LT}_2^{\mathcal{T}}, \dots)$ obtained from a first-order theory \mathcal{T} by stratifying by QAD the \mathcal{T} -equivalence classes of formulas.
- 3. Boolean doctrines = structures occurring as layer 0 in the sequences.
- 4. We obtain a doctrinal version of Herbrand's theorem for formulas with QAD \leq 1.

This describes how to freely construct the layer 1 (formulas with QAD \leq 1) given the layer 0 (quantifier-free formulas).

M. Abbadini, F. Guffanti. Quantifier-free formulas and quantifier alternation depth in doctrines. On arXiv.

Future work:

 Axiomatize the finite sequences (LT^T₀, LT^T₁,..., LT^T_n) obtained from a first-order theory T by stratifying by QAD the T-equivalence classes of formulas up to QAD n.

We have done: n = 0.

Enough: n = 1.

Show how to freely add a layer of QAD to one such sequence (P₀,..., P_n) (without destroying the existing quantifiers). We have done: n = 0.

Enough: n = 1.

I.e.: let \mathcal{T} be a theory whose axioms are universal closures of formulas of QAD \leq 1. Give a criterion for when a given formula of QAD \leq 2 is provable from \mathcal{T} , in terms of \mathcal{T} -provability of formulas of QAD \leq 1.

Contributions:

- 1. Axiomatize "quantifier-free fragments".
- 2. Axiomatize the sequences $(\mathbf{LT}_0^{\mathcal{T}}, \mathbf{LT}_1^{\mathcal{T}}, \mathbf{LT}_2^{\mathcal{T}}, \dots)$ obtained from a first-order theory \mathcal{T} by stratifying by QAD the \mathcal{T} -equivalence classes of formulas.
- 3. Boolean doctrines = structures occurring as layer 0 in the sequences.
- 4. Doctrinal version of Herbrand's theorem for formulas with QAD \leq 1. This describes how to freely add the first layer of QAD to a Boolean doctrine.
- M. Abbadini, F. Guffanti. Quantifier-free formulas and quantifier alternation depth in doctrines. On arXiv.

Future work:

- 1. Axiomatize the finite sequences $(\mathbf{LT}_0^{\mathcal{T}}, \mathbf{LT}_1^{\mathcal{T}}, \dots, \mathbf{LT}_n^{\mathcal{T}})$.
- 2. Describe how to freely add a layer of QAD to $(\mathbf{P}_0, \dots, \mathbf{P}_n)$.

Thank you!