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Based on joint works with Francesca Guffanti:

Quantifier-free formulas and quantifier alternation depth in doctrines. On arXiv.

Freely adding one layer of quantifiers to a Boolean doctrine. On arXiv.
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The algebras of logic forget some syntactic information.

E.g.: for a classical propositional theory T , in the Boolean algebra of

propositional formulas modulo T -interprovability we cannot distinguish

the “pure propositional variables” from the other formulas obtained from

them via Boolean combinations.

The algebras of classical first-order theory: we cannot distinguish the

quantifier-free formulas from the other ones, we cannot talk about

quantifier alternation depth.
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I will present one way to talk about quantifier-free formulas and

quantifier alternation depth in the algebras of classical first-order logic.

Inspiration: step-by-step methods in propositional modal logic and

intuitionistic propositional logic.
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First-order classical logic
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Goal: develop step-by-step methods for nested quantifiers in the

algebras of first-order classical logic.

Algebras of first-order classical logic = first-order Boolean doctrines

(Lawvere, ’60s).

For simplicity, in this talk, we consider only mono-sorted languages with

only relational symbols (i.e. no function symbols) and no equality

predicate.

Marco Abbadini Quantifier-free fragments and quantifier alternation depth in doctrines 5 / 37



Let T be a first-order theory.

1. (Algebra of formulas in each context:) For each tuple

x = ⟨x1, . . . , xn⟩ of distinct variables (also called “context”), we

have a Boolean algebra

LTT (x)

(LT stands for “Lindenbaum-Tarski algebra”) obtained by modding

by T -interprovability the set of formulas with free (possibly dummy)

variables x1, . . . , xn.

2. (Substitutions:) Given two contexts (= tuples of distinct variables)

x = ⟨x1, . . . , xn⟩ and y = ⟨y1, . . . , ym⟩ and given a function

σ : {x1, . . . , xn} → {y1, . . . , ym},

we have a function

LTT
σ : LTT (x) −→ LTT (y)

α(x) 7−→ [α(x), xi 7→ σ(xi )].
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3. (Quantifiers:) For all tuples of distinct variables x and y , we have

functions

LTT (x , y) −→ LTT (x)

α(x , y) 7−→ ∀y α(x , y)

and

LTT (x , y) −→ LTT (x)

α(x , y) 7−→ ∃y α(x , y).
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The algebraic structure associated to the first-order theory T is captured

by

1. (Algebra of formulas in each context:)

LTT (x).

2. (Substitutions:)

LTT
σ : LTT (x) −→ LTT (y)

α(x) 7−→ [α(x), xi 7→ σ(xi )].

3. (Quantifiers:)

∀y ,∃y : LTT (x , y) → LTT (x).

Structures arising in this way: first-order Boolean doctrines (Lawvere,

’60s).
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A first-order Boolean doctrine consists of

1. for each tuple x of distinct variables, a Boolean algebra P(x)

(interpretation: algebra of formulas with free variables in x)

2. for all tuples x and y of distinct variables and every function

σ : {x1, . . . , xn} → {y1, . . . , ym}, a Boolean homomorphism

Pσ : P(x) → P(y),

satisfying (as a family) functoriality: Pid = id, Pg◦f = Pg ◦ Pf .

(interpretation: substitution)

3. for all tuples of distinct variables x and y , a function

∀y : P(x , y) → P(x)

(from which the existential is definable)

(interpretation: universal quantification)

satisfying the following properties:
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1. Quantifiers are adjoint to dummization:

for every α(x) and β(x , y),

α(x) ≤ ∀y β(x , y) in P(x) ⇐⇒ α(x , y) ≤ β(x , y) in P(x , y),

where α(x , y) is α(x) with y dummy.

2. Beck-Chevalley (substitution commutes with quantification over

disjoint sets of variables):

For every σ : {x1, . . . , xn} → {x ′1, . . . , x ′m}, and α(x , y),

Pσ(∀y α(x , y)) = ∀y Pσ(α(x , y)),

i.e.

[∀y α(x , y), xi 7→ σ(xi )] = ∀y [α(x , y), xi 7→ σ(xi )].
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First-order Boolean doctrines are precisely the algebras of classical

first-order logic.

First-order Boolean doctrines : Classical first-order logic

=

Boolean algebras : Classical propositional logic

First-order Boolean doctrines can be thought of as many-sorted algebras

(one sort for each context), or certain functors.

The actual definition of a first-order Boolean doctrine is a bit more

general, capturing also the case of many-sorted languages and the

presence of function symbols. It is a functor P : Cop → BA where C is a

category with finite products, satisfying certain properties...

Marco Abbadini Quantifier-free fragments and quantifier alternation depth in doctrines 11 / 37



First-order Boolean doctrines forget syntactic information such as which

formulas are quantifier-free.

E.g.:

1. theory of partial orders.

2. theory of partial orders with an additional unary relation symbol

“min” and the axiom

∀x (min(x) ↔ (∀y x ≤ y)).

The notion of quantifier-free formulas is not intrinsic in a first-order

Boolean doctrine.
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The main goals:

1. To introduce in the doctrinal approach enough structure to track

quantifier-free formulas, quantifier alternation depth.

2. To give an explicit construction of free algebras by freely adding

quantifiers.
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Quantifier-free formulas
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Given a first-order theory T , inside its Lindenbaum-Tarski algebra LTT

lies the algebra of equivalence classes of quantifier-free formulas LTT
0 .

LTT
0 is a Boolean doctrine.

A Boolean doctrine consists of

1. for each tuple x of distinct variables, a Boolean algebra P(x)

(interpretation: set of formulas with free variables in x)

2. for all tuples x and y of distinct variables and every function

f : {x1, . . . , xn} → {y1, . . . , ym}, a Boolean homomorphism

Pσ : P(x) → P(y),

satisfying (as a family) functoriality: Pid = id, Pg◦f = Pg ◦ Pf .

(interpretation: substitution)
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Definition

A quantifier-free fragment of a first-order Boolean doctrine P is a

Boolean subdoctrine P0 of P that generates P.

Boolean subdoctrine: a subset of P closed under Boolean combinations

and substitutions.

Generating: closing P0 under quantifiers, Boolean combinations,

quantifiers, Boolean combinations... gives the whole P.
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Theorem (MA, Guffanti)

If P0 is a quantifier-free fragment of a first-order Boolean doctrine P,

then there is a theory T such that P is the Lindenbaum-Tarski algebra

LTT of T and P0 consists precisely of (the equivalence classes of)

quantifier-free formulas.

This is analogous to:

“If X is a generating subset of a Boolean algebra B, then there is a

propositional theory T whose Lindenbaum-Tarski Boolean algebra is B,

and for which the elements of X are precisely the atomic propositional

formulas.”
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Quantifier alternation depth
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Given a quantifier-free fragment

P0 ⊆ P

we can stratify formulas by quantifier alternation depth (= maximum

depth of alternations of ∃ and ∀)

P0 ⊆ P1 ⊆ P2 ⊆ . . . P

We next give an intrinsic axiomatization of the sequences

P0 ⊆ P1 ⊆ P2 ⊆ . . .

of “formulas stratified by quantifier alternation depth”.
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A QA-stratified Boolean doctrine is a sequence of Boolean doctrines

(recall that these have Boolean operations and substitutions, but not

quantifiers)

P0 ≤ P1 ≤ P2 ≤ . . .

(“≤” means “embedding of Boolean doctrines”) equipped, for all x , y ,

and every n ∈ N, with a function

∀y : Pn(x , y) −→ Pn+1(x)

(interpretation: universal quantification)

satisfying:
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1. Quantifiers are adjoint to dummization:

for every n ∈ N, α(x) ∈ Pn+1(x) and β(x , y) ∈ Pn(x , y):

α(x) ≤ ∀y β(x , y) in Pn+1(x) ⇐⇒ α(x , y) ≤ β(x , y) in Pn+1(x , y).

2. Beck-Chevalley (quantifiers commute with substitutions):

For every n ∈ N, σ : {x1, . . . , xn} → {x ′1, . . . , x ′m}, and α(x , y),

[∀y α(x , y), xi 7→ σ(xi )]n+1 = ∀y [α(x , y), xi 7→ σ(xi )]n

3. Generation:

For all n and x , the Boolean algebra Pn+1(x) is generated by

{∀y α(x , y) | y tuple of distinct variables, α(x , y) ∈ Pn(x , y)}.
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Theorem (MA, Guffanti)

QA-stratified Boolean doctrines capture precisely (up to isomorphism)

the sequences

LTT
0 ⊆ LTT

1 ⊆ LTT
2 ⊆ . . .

obtained from a first-order theory and stratifying the formulas by

quantifier alternation depth.
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Quantifier alternation up to a fixed number
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Question for future work: for any n ∈ N, what is the algebraic structure

of the finite sequences of the form

LTT
0 ⊆ LTT

1 ⊆ LTT
2 · · · ⊆ LTT

n

arising from a first-order theory T ?

Conjecture: take the axioms of QA-stratified Boolean doctrine and

consider only those not involving any element of LTT
k for k > n.
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We did the case n = 0 ⇝ Boolean doctrines.
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Theorem

Boolean doctrines are precisely the structures P0 that appear in some

QA-stratified Boolean doctrine (P0,P1,P2 . . . ).

Equivalently, they are precisely the structures that quantifier-free

fragments of some first-order Boolean doctrine.

(⊆) says: for every Boolean doctrine P0, there is a first-order theory T
such that, for all x , P0(x) is the quotient modulo T -interprovability of

the set of quantifier-free formulas with free variables x .

Idea: P0 encodes a universal theory. That’s the theory. In fact, this is the

“free way” in which to obtain a QA-stratified Boolean doctrine

(P0,P1,P2, . . . ) from P0.
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Free construction
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Theorem

The forgetful functor

first-order Boolean doctrines −→ Boolean doctrines

(which forgets quantifiers) has a left adjoint (which freely adds

quantifiers).

Let P0 be a Boolean doctrine. We call quantifier completion of P0 the

first-order Boolean doctrine Pfree obtained by freely adding quantifiers.

The comparison map

P0 ↪→ Pfree

is injective and generating: P0 is a quantifier-free fragment of Pfree.

Then one can stratify Pfree based on quantifier-alternation depth.

P0 ↪→ Pfree
1 ↪→ Pfree

2 ↪→ . . . Pfree

where Pfree
n collects the formulas of QAD ≤ n.
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We show how to explicitly construct Pfree
1 from P0. This is essentially a

doctrinal version of Herbrand’s theorem for formulas of QAD ≤ 1.
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Theorem (Herbrand, 1930)

If T is a universal theory, and α(x) is quantifier-free, we have

⊢T ∃x α(x)

iff there are term-definable constants c1, . . . , ck s.t.

⊢T α(c1) ∨ · · · ∨ α(ck).
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A more general formulation characterizes entailment between formulas of

quantifier alternation depth ≤ 1 modulo a universal theory.

E.g.: Given a universal theory T , we have

∀y α(y) ∧ ∃w β(w) ⊢T ∀z γ(z) ∨ ∃v δ(v)

(where α, β, γ and δ are quantifier-free) iff there are term-definable

constants c1, . . . , cn and d1, . . . , dm such that

n∧
i=1

α(ci ) ∧ β(w) ⊢T γ(z) ∨
m∨

k=1

δ(dk).
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Theorem (Doctrinal version of Herbrand’s theorem for

formulas with QAD ≤ 1)

Let P0 : C
op → BA be a Boolean doctrine (= a functor), with C a small

category with finite products. Then ...

[ = way to transform inequalities between “formulas of quantifier

alternation depth ≤ 1” in the quantifier completion of P0 into an

equivalent existence of terms such that certain inequalities hold in P0].
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This describes the (order on the) algebra Pfree
1 of formulas with quantifier

alternation depth ≤ 1 freely constructed over P0.

(It holds also with many sorts, with function symbols, with equality.)
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Next steps, for future work: how to add further layers of quantifiers

without destroying the quantifiers created at the previous steps.

This would give a step-by-step construction of the quantifier completion

of a Boolean doctrine. It will amount to a doctrinal version of Herbrand’s

theorem for arbitrary first-order formulas.

Herbrand used the fact that every formula is equivalent to one in prenex

normal form. I am not sure this holds in doctrines. In general, in

doctrines:

(∃x α(x)) ∨ β ̸= ∃x (α(x) ∨ β).

E.g.: when α = ⊤ and β = ⊤:

⊤ ≠ ∃x ⊤(x).
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Conclusions
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The main goals:

1. To introduce in the doctrinal approach enough structure to track

quantifier-free formulas, quantifier alternation depth.

2. To give an explicit construction of free algebras by freely adding

quantifiers.
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Contributions:

1. Axiomatize “quantifier-free fragments”.

2. Axiomatize the sequences (LTT
0 ,LT

T
1 ,LT

T
2 , . . . ) obtained from a

theory T by stratifying by QAD the T -equiv. classes of formulas.

3. Boolean doctrines = structures occurring as layer 0 in the sequences.

MA, F. Guffanti. Quantifier-free formulas and quantifier alternation depth in

doctrines. (arXiv.)

4. How to freely add the first layer of QAD to a Boolean doctrine, i.e.

doctrinal version of Herbrand’s theorem for formulas with QAD ≤ 1.

MA, F. Guffanti. Freely adding one layer of quantifiers to a Boolean doctrine.

(arXiv.)

Future work:

a. Axiomatize the finite sequences (LTT
0 ,LT

T
1 , . . . ,LT

T
n ).

b. Describe how to freely add a layer of QAD to (P0, . . . ,Pn).

c. Do all of these dually (via Stone duality).

Thank you!
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