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a Freely adding one layer of quantifiers to a Boolean doctrine. On arXiv.
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The algebras of logic forget some syntactic information.

E.g.: for a classical propositional theory 7, in the Boolean algebra of
propositional formulas modulo T-interprovability we cannot distinguish
the “pure propositional variables” from the other formulas obtained from
them via Boolean combinations.

The algebras of classical first-order theory: we cannot distinguish the
quantifier-free formulas from the other ones, we cannot talk about
quantifier alternation depth.
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| will present one way to talk about quantifier-free formulas and
quantifier alternation depth in the algebras of classical first-order logic.

Inspiration: step-by-step methods in propositional modal logic and
intuitionistic propositional logic.
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First-order classical logic
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Goal: develop step-by-step methods for nested quantifiers in the
algebras of first-order classical logic.

Algebras of first-order classical logic = first-order Boolean doctrines
(Lawvere, '60s).

For simplicity, in this talk, we consider only mono-sorted languages with
only relational symbols (i.e. no function symbols) and no equality
predicate.
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Let 7 be a first-order theory.

1. (Algebra of formulas in each context:) For each tuple
X = (x1,...,%,) of distinct variables (also called “context"), we
have a Boolean algebra

LT’ (%)

(LT stands for “Lindenbaum-Tarski algebra”) obtained by modding
by T-interprovability the set of formulas with free (possibly dummy)
variables x1,..., X,.

2. (Substitutions:) Given two contexts (= tuples of distinct variables)
X = (X1,...,xn) and ¥ = (y1, ..., ¥m) and given a function

o {xt, .y Xnt = Y1y Ymbs

we have a function

LT, LT (x) — LT (3)

a(X) — [a(X), xi = a(x;)].

Marco Abbadini Quantifier-free fragments and quantifier alternation depth in doctrines



3. (Quantifiers:) For all tuples of distinct variables X and ¥, we have
functions

LT (x,y) — LT (%)
a(X,y) — Yy a(x,y)

and

LT (x,y) — LT7 (%)
a(X,y) — JFy a(X,y).
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The algebraic structure associated to the first-order theory 7 is captured
by

1. (Algebra of formulas in each context:)
LT (x).
2. (Substitutions:)
LT LT () — LT ()
a(X) — [a(X), x; — o(x;)].

3. (Quantifiers:)
vy, 3y: LT7 (%,7) — LT ().

Structures arising in this way: first-order Boolean doctrines (Lawvere,
'60s).
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A first-order Boolean doctrine consists of

1. for each tuple X of distinct variables, a Boolean algebra P(X)
(interpretation: algebra of formulas with free variables in X)

2. for all tuples X and y of distinct variables and every function
o:{x1,...,xa} = {¥1,.-.,¥m}, a Boolean homomorphism

P,: P(x) = P(y),

satisfying (as a family) functoriality: Pig = id, Pgor = P4 o Py.
(interpretation: substitution)

3. for all tuples of distinct variables X and y, a function
vy: P(x,y) = P(X)

(from which the existential is definable)
(interpretation: universal quantification)

satisfying the following properties:
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1. Quantifiers are adjoint to dummization:
for every a(x) and B(x,¥),

a(x) <Vy B(x,y) in P(x) <= a(x,y) < B(x,¥) in P(X,¥),

where a(X,¥) is a(x) with y dummy.
2. Beck-Chevalley (substitution commutes with quantification over

disjoint sets of variables):
For every o: {x1,...,%xa} = {x{,...,x,,}, and a(X,¥),

Ps(Vy a(x,¥)) = Vy Po(a(X,Y)),

[vy a(x,¥), xi = o(x)] = ¥y [a(X,¥), xi = a(xi)]-
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First-order Boolean doctrines are precisely the algebras of classical
first-order logic.

First-order Boolean doctrines :  Classical first-order logic

Boolean algebras :  Classical propositional logic

First-order Boolean doctrines can be thought of as many-sorted algebras
(one sort for each context), or certain functors.

The actual definition of a first-order Boolean doctrine is a bit more
general, capturing also the case of many-sorted languages and the
presence of function symbols. It is a functor P: C°» — BA where C is a
category with finite products, satisfying certain properties...
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First-order Boolean doctrines forget syntactic information such as which
formulas are quantifier-free.

E.g.:

1. theory of partial orders.

2. theory of partial orders with an additional unary relation symbol
“min"” and the axiom

Vx (min(x) <> (Vy x < y)).

The notion of quantifier-free formulas is not intrinsic in a first-order
Boolean doctrine.
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The main goals:
1. To introduce in the doctrinal approach enough structure to track
quantifier-free formulas, quantifier alternation depth.

2. To give an explicit construction of free algebras by freely adding
quantifiers.
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Quantifier-free formulas
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Given a first-order theory T, inside its Lindenbaum-Tarski algebra LT
lies the algebra of equivalence classes of quantifier-free formulas LTg.

LT{ is a Boolean doctrine.
A Boolean doctrine consists of

1. for each tuple X of distinct variables, a Boolean algebra P(X)
(interpretation: set of formulas with free variables in )

2. for all tuples x and y of distinct variables and every function
fi{x,....,xn} = {y1,...,¥m}, a Boolean homomorphism

P,: P(x) = P(y),

satisfying (as a family) functoriality: Piq =id, Pgor = Pg o Py.
(interpretation: substitution)
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Definition

A quantifier-free fragment of a first-order Boolean doctrine P is a
Boolean subdoctrine Py of P that generates P.

Boolean subdoctrine: a subset of P closed under Boolean combinations
and substitutions.

Generating: closing Py under quantifiers, Boolean combinations,
quantifiers, Boolean combinations... gives the whole P.
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Theorem (MA, Guffanti)

If Py is a quantifier-free fragment of a first-order Boolean doctrine P,
then there is a theory T such that P is the Lindenbaum-Tarski algebra
LT” of T and Py consists precisely of (the equivalence classes of)
quantifier-free formulas.

This is analogous to:

“If X is a generating subset of a Boolean algebra B, then there is a
propositional theory 7 whose Lindenbaum-Tarski Boolean algebra is B,
and for which the elements of X are precisely the atomic propositional
formulas.”
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Quantifier alternation depth
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Given a quantifier-free fragment
PoCP

we can stratify formulas by quantifier alternation depth (= maximum
depth of alternations of 3 and V)

PobCP;CPyC... P

We next give an intrinsic axiomatization of the sequences
PoCPiCPyC...

of “formulas stratified by quantifier alternation depth”.
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A QA-stratified Boolean doctrine is a sequence of Boolean doctrines
(recall that these have Boolean operations and substitutions, but not
quantifiers)

Po <P <Pyy<...

(“<" means “embedding of Boolean doctrines”) equipped, for all X, ¥,
and every n € N, with a function

W: Pn(Y7Y) — Pn+l(y)

(interpretation: universal quantification)
satisfying:
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1. Quantifiers are adjoint to dummization:
for every n € N, a(x) € P,+1(X) and (x,y) € P,(X,¥):

a(x) <Vy B(x,y) in Py (X) <= a(x,y) < B(x,¥) in Prya(X,5)-

2. Beck-Chevalley (quantifiers commute with substitutions):
Forevery ne N, o: {x1,...,xp} = {x{,...,x,,}, and a(X,¥),

vy a(X,¥), xi = 0(xi)]nr1 = VY [a(X,¥), xi = 0(xi)]n

3. Generation:
For all n and X, the Boolean algebra P, 1(X) is generated by

{Vy a(x,¥) | ¥ tuple of distinct variables, a(x,y) € P,(X,¥)}.
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Theorem (MA, Guffanti)

QA-stratified Boolean doctrines capture precisely (up to isomorphism)
the sequences
LT CLT] CLT] C...

obtained from a first-order theory and stratifying the formulas by
quantifier alternation depth.
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Quantifier alternation up to a fixed number
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Question for future work: for any n € N, what is the algebraic structure
of the finite sequences of the form

LT] CLT] CLT] --- CLT/]

arising from a first-order theory 77

Conjecture: take the axioms of QA-stratified Boolean doctrine and
consider only those not involving any element of LT[ for k > n.
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We did the case n = 0 ~ Boolean doctrines.
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Theorem

Boolean doctrines are precisely the structures Py that appear in some
QA-stratified Boolean doctrine (P, P1,P5...).

Equivalently, they are precisely the structures that quantifier-free
fragments of some first-order Boolean doctrine.

(C) says: for every Boolean doctrine Py, there is a first-order theory T
such that, for all X, Po(X) is the quotient modulo T -interprovability of
the set of quantifier-free formulas with free variables Xx.

Idea: Py encodes a universal theory. That's the theory. In fact, this is the
“free way" in which to obtain a QA-stratified Boolean doctrine
(Po, Pl) P2, - ) from Po.
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Free construction
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Theorem

The forgetful functor
first-order Boolean doctrines — Boolean doctrines

(which forgets quantifiers) has a left adjoint (which freely adds
quantifiers).

Let Py be a Boolean doctrine. We call quantifier completion of Py the

first-order Boolean doctrine P°® obtained by freely adding quantifiers.

The comparison map
PO N Pfree

is injective and generating: Py is a quantifier-free fragment of Pfree.

Then one can stratify P based on quantifier-alternation depth.

free free free
Po =P =Py — ... P

where P collects the formulas of QAD < n.
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We show how to explicitly construct Pi® from Pg. This is essentially a
doctrinal version of Herbrand's theorem for formulas of QAD < 1.
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Theorem (Herbrand, 1930)

If T is a universal theory, and a(x) is quantifier-free, we have
F7 3x a(x)

iff there are term-definable constants ci, ..., cx S.t.

Fr a(cl) VeV a(ck).
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A more general formulation characterizes entailment between formulas of
quantifier alternation depth < 1 modulo a universal theory.

E.g.: Given a universal theory 7, we have
Vy a(y) A 3w B(w) B Vzy(z) vV 3vi(v)

(where «, 8, v and 0 are quantifier-free) iff there are term-definable

constants ¢j,...,c, and di, ..., dy, such that

A

1

a(ci) AB(w) F7y(2) vV \/ 6(dk).

1 k

<3

1
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Theorem (Doctrinal version of Herbrand's theorem for

formulas with QAD < 1)

Let Py: C°P — BA be a Boolean doctrine (= a functor), with C a small
category with finite products. Then ...

[ = way to transform inequalities between “formulas of quantifier
alternation depth < 1" in the quantifier completion of Py into an
equivalent existence of terms such that certain inequalities hold in Pg].
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Theorem 4.9 (Doctrinal version of Herbrand’s theorem). Let P: C°® — BA be a Boolean doctrine with
C small, and let (idc,i): P — P" be a guantifier completion of P. For all S,Yi,...,Y;,W,...,Wj,
2y, Z;, V. VR €C, (i € P(S X Y3))ica 7, (Yh € P(S X Wh))pen, i (B5 € P(S X Z))) =, and
(0k € P(S X Vi))g=1,. ks the following conditions are equivalent.

(1) In P¥(S) we have

i R i k
(o) o)« ({00 (§ 500)

i=1 h=1 j=1 k=1

T, W)

n

h
/\ P({pry,9:))(u;) A /\ P((Prlapthrﬂl))(’Yh) <

i=1 h=1 Fi

P((pry, pr;))(8;) V \ P((pry, gi)) (@)

1 k=1

<

This describes the (order on the) algebra P{® of formulas with quantifier
alternation depth < 1 freely constructed over Py.

(It holds also with many sorts, with function symbols, with equality.)
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Next steps, for future work: how to add further layers of quantifiers
without destroying the quantifiers created at the previous steps.

This would give a step-by-step construction of the quantifier completion
of a Boolean doctrine. It will amount to a doctrinal version of Herbrand's
theorem for arbitrary first-order formulas.

Herbrand used the fact that every formula is equivalent to one in prenex
normal form. | am not sure this holds in doctrines. In general, in
doctrines:

(Ix a(x)) V B # Ix (a(x) V ).
E.g.: whena=Tand = T:

T # Ix T(x).
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Conclusions
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The main goals:
1. To introduce in the doctrinal approach enough structure to track
quantifier-free formulas, quantifier alternation depth.

2. To give an explicit construction of free algebras by freely adding
quantifiers.
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Contributions:

1. Axiomatize “quantifier-free fragments”.

2. Axiomatize the sequences (LTg , LT/ ,LTJ],...) obtained from a
theory T by stratifying by QAD the T-equiv. classes of formulas.

3. Boolean doctrines = structures occurring as layer 0 in the sequences.

@ MA, F. Guffanti. Quantifier-free formulas and quantifier alternation depth in
doctrines. (arXiv.)

4. How to freely add the first layer of QAD to a Boolean doctrine, i.e.
doctrinal version of Herbrand's theorem for formulas with QAD < 1.

@ MA, F. Guffanti. Freely adding one layer of quantifiers to a Boolean doctrine.
(arXiv.)

Future work:

a. Axiomatize the finite sequences (LT] ,LT7,...,LT/).
b. Describe how to freely add a layer of QAD to (Py,...,P,).
c. Do all of these dually (via Stone duality).

Thank you!
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