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Compact metric spaces

A metric is a function d: X x X — [0, 00) s.t.
1. (Symmetry) d(x,y) = d(y, x).
2. (Reflexivity) d(x,x) = 0.
3. (Separatedness) d(x,y) = 0 implies x = y.
4. (Triangle inequality) d(x, z) < d(x,y) + d(y, 2).
A compact metric space is a metric space that is compact in its induced
topology. (It is necessarily Hausdorff.)
Example: [0,1]".

Marco Abbadini Coalgebraic flavour of metric compact Hausdorff spaces



The category of compact metric spaces (and non-expansive maps) is not
great.

Can we tweak to the class of objects to get a good one?
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The category of compact metric spaces and non-expansive maps:
Problem 1. not cocomplete: no coproduct of two singletons.

Remedy: allow distance oo.

Definition

A metric (in this talk) is a map d: X x X — [0, o] s.t.
> (Symmetry) d(x,y) = d(y, x).
> (Reflexivity) d(x,x) = 0.
> (Separatedness) d(x,y) = 0 implies x = y.
» (Triangle inequality) d(x,z) < d(x,y) + d(y, z).
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The category of compact metric spaces and non-expansive maps:

Problem 2. not complete: no countable power of a two-element metric
space.

Reason: the topology induced by the product metric (= sup metric) is
not the product topology, and is not compact.

Remedy: have the topology not necessarily induced by the metric, but
just compatible.
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Instead of compact metric spaces...
Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X
together with a metric d: X x X — [0, 00| that is lower semicontinuous,
i.e. that is continuous with respect to the upper topology of [0, oc].

(They did not require symmetry and separatedness.)

Upper topology of [0, o0]: generated by (u, 0], u € [0, xq].

Lower semicontinuity of d can also be expressed as:

d(XOa }’0) < llxrll)pf d(Xa y)
Y=o

Small perturbations may yield great increments in distances, but not
great decrements.
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Instead of compact metric spaces...
Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X
together with a metric d: X x X — [0, 00| that is lower semicontinuous,
i.e. that is continuous with respect to the upper topology of [0, oc].

(They did not require symmetry and separatedness.)

Upper topology of [0, o0]: generated by (u, 0], u € [0, xq].

Lower semicontinuity of d can also be expressed as:

d(XOa }’0) < llxrll)pf d(Xa y)
Y=o

Small perturbations may yield great increments in distances, but not
great decrements.

Example: any compact metric space.
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Instead of compact metric spaces...
Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X
together with a metric d: X x X — [0, co] that is lower semicontinuous,
i.e. that is continuous with respect to the upper topology of [0, oc].

(They did not require symmetry and separatedness.)

Upper topology of [0, oco]: generated by (u, oo], u € [0, o0].
Lower semicontinuity of d can also be expressed as:

d(x0,0) < liminf d(x, y).
Y=Y

Small perturbations may yield great increments in distances, but not
great decrements.

Example: any compact Hausdorff space where every pair of distinct
points has distance 1.
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Instead of compact metric spaces...
Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X
together with a metric d: X x X — [0, co] that is lower semicontinuous,
i.e. that is continuous with respect to the upper topology of [0, oc].

(They did not require symmetry and separatedness.)

Upper topology of [0, 00]: generated by (u, 0], u € [0, x].
Lower semicontinuity of d can also be expressed as:

d(xo,y0) < liminf d(x, y).
Y_U’g

Small perturbations may yield great increments in distances, but not
great decrements.

Example: Any product of compact metric spaces, with the product
metric (= sup metric) and the product topology.
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Theorem (Essentially Tholen 2009)

The category MetCH of metric compact Hausdorff spaces and
non-expansive continuous maps is complete and cocomplete.

What other good categorical properties?

What about a well-behaved factorization system?
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In most classes of algebras (groups, rings, monoids, Boolean algebras...),

1. morphisms have a (surjection, injection) factorization;
2. surjective morphisms = regular epis = strong epis;

3. injective morphisms = monos;
4

. surjective morphisms are stable under pullbacks.

Closed under arbitrary products and subalgebras = regular.

Definition

A category C with finite limits is regular if
1. every morphism has a (strong epi, mono) factorization;

2. the pullback of a strong epi along any morphism is a strong epi.

In any regular category, strong epi = regular epi.

Closed under products, subalgebras, homomorphic images = Barr-exact.
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The category of topological spaces is not regular.

A continuous function has different (surjection, injection) factorizations.

fx]

The two “extremal” cases are: equip f[X] with the...

quotient topology induced by X:  subspace topology induced by Y:

X f 14 X f 14
N P N P

~ - ~ -

- ~

N .
quotient \\)‘M .~ injection surjection \\;4’( -~ embedding

FX] FX]

(strong epi, mono) factorization.  (epi, strong mono) factorization.
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Strong epis (= quotients maps) are not stable under pullbacks (see a
counterexample in Borceaux’ HCA2). Therefore, Top is not regular.

quotient topology induced by X: subspace topology induced by Y:

f f
X Y X Y
,vr ~
quotient\\\)fq V//injection surjection\\\>ﬂ V//embedding
FIX] FIX]
(strong epi, mono) factorization.  (epi, strong mono) factorization.
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However, Top is coregular (e.g. [Barr, Pedicchio, 1995]): strong monos
(= embeddings) are stable under pushouts.

quotient topology induced by X:  subspace topology induced by Y:

f f
X Y X Y
" o o
quotient\\;ﬂ V//injection surjection\\\au V//embedding
fX] FX]
(strong epi, mono) factorization.  (epi, strong mono) factorization.

A category C with finite colimits is coregular if

1. every morphism has an (epi, strong mono) factorization;

2. the pushout of a strong mono along any morphism is a strong mono.
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—Y

X
[

X ceems Y

Coregularity ~ given an embedding X < Y and a morphism X — X’,
we can replace X by X’ inside Y.
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Rough rule of thumb:

1. Categories of “algebras” are regular (and maybe even Barr-exact).

2. Categories of “spaces” are coregular (and maybe even Barr-coexact).

Metric compact Hausdorff spaces fall in the second class.
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Given a morphism 7: X — Y in MetCH, we equip f[X] with the metric
and topology induced by Y:

X f y
\\ /’f

~ -
~ -

surjection "y -~ embedding

FIX]

(epi, strong mono) factorization.

In MetCH
1. surjective morphisms = epis;

2. embeddings = strong monos = regular monos.

Marco Abbadini Coalgebraic flavour of metric compact Hausdorff spaces 13 /23



Marco Abbadini

Theorem

MetCH /s coregular.

l.e.: embeddings are stable under pushouts.

Example: walking distance + add a train connection.

d(Milan, Rome) = 138 d’(Milan, Rome) = 3
d(Milan, Naples) = 184 d'(Milan, Naples) = 54
d(Rome, Naples) = 51 d’(Rome, Naples) = 51
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Theorem

MetCH /s Barr-coexact.

Roughly speaking, Barr-coexactness means:

For every surjective morphism X 4+ X — Z satisfying certain properties
(“reflexivity”, “symmetry”, “transitivity” ), there is a closed subspace

A C X s.t. Z is obtained from X + X by identifying, for each y € A, the
two copies of y in X + X.

We sketch the proof of the theorem.
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Encoding of surjective morphisms: a surjective morphism
f: XY,
can be encoded by the function
v X x X — [0, 00]

(x1,x2) — dy(f(x1), f(x2)).

Properties of ~¢7

1. It is a premetric (= symmetric, reflexive, triangle inequality, but
distinct points may have distance 0). Moreover, it is below dx, i.e.

y(x1, x2) < dx(x1,x2).

We say that it is a sub-premetric of X.

2. It is lower semicontinuous (= contin. wrt the upper top. of [0, x]).
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The isomorphism classes of surjective morphisms out of an object
X € MetCH are in bijective correspondence with the
lower semicontinuous sub-premetrics on X.
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MetCH Barr-coexact: every internal equivalence corelation is a cokernel
pair.
Given X € MetCH and A — X an embedding.

The cokernel pair of A < X is the quotient X + X — (X + X)/~,
where ~ identifies, for each a € A, the two copies of a.

This quotient has an associated lower semicontinuous sub-premetric

(X + X) x (X + X) = [0, 0.
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Internal binary corelation = equivalence class of a surjective X + X — Z.
Equivalently, a lower semicontinuous sub-premetric v on X + X.

> Reflexive: for all i,j € {0,1} dx(x,y) <~((x,i),(y,)))

> Symmetric: ¥((x,0), (y,1)) = 7((x,1), (y,0)).
> Transitive: (under reflexivity and symmetry:) for all x,y € X with
~v((x,0), (y,1)) # oo there is z € X such that

((x,0), (v, 1)) = ((x,0),(2,1)) +7((2,0), (v, 1)).

Reflexive internal binary relation:  Reflexive internal binary corelation:
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Theorem

For such a ~y, for all x,y € X with v((x,0),(y,1)) # oo there is z € X
s.t. v((z,0),(z,1)) = 0 and

7((X70)7 (Y7 1)) = dX(X’ Z) + dX(ZvY)'

Consequence: ~y is the cokernel pair of the embedding
{ze X |1((2,0),(z,1)) =0} = X.

Compactness is used crucially.
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This concludes the sketch of the proof that the category MetCH of
metric compact Hausdorff spaces is Barr-coexact.
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To sum up
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Allowing oo measures and topology not induced by the metric
~> great categorical properties:

|
The category MetCH of metric compact Hausdorff spaces and
continuous non-expansive maps is complete, cocomplete, Barr-coexact.

» Open question: is MetCH dually equivalent to a variety of possibly
infinitary algebras?
Equivalently: does MetCH have a regular injective regular
cogenerator?
(If so, then function symbols of infinite arity are probably necessary.)
» Requiring the compact Hausdorff topology to be induced by the
metric ~» no infinite products.
But is it still finitely cocomplete finitely complete Barr-coexact?

» Other quantales?

MerCl
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