Coalgebraic flavour of metric compact Hausdorff spaces

Marco Abbadini

School of Computer Science, University of Birmingham, UK

Seminar at Université catholique de Louvain, Louvain-la-Neuve, Belgium 7 January 2025

Based on:

[Marco Abbadini, Dirk Hofmann.](https://arxiv.org/abs/2408.07039) [Barr-coexactness for metric compact Hausdorff spaces](https://arxiv.org/abs/2408.07039). [arXiv:2408.07039.](https://arxiv.org/abs/2408.07039)

Research supported by

- UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee; project "DCPOS", grant number EP/Y015029/1
	- Italian Ministry of University and Research through the PRIN project n. 20173WKCM5
- Fundação para a Ciência e a Tecnologia (FCT) under CIDMA Grants UIDB/04106/2020 and UIDP/04106/2020

A metric is a function $d: X \times X \rightarrow [0, \infty)$ s.t.

1. (Symmetry)
$$
d(x, y) = d(y, x)
$$
.

- 2. (Reflexivity) $d(x, x) = 0$.
- 3. (Separatedness) $d(x, y) = 0$ implies $x = y$.
- 4. (Triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$.

A compact metric space is a metric space that is compact in its induced topology. (It is necessarily Hausdorff.)

Example: $[0, 1]^n$.

The category of compact metric spaces (and non-expansive maps) is not great.

Can we tweak to the class of objects to get a good one?

The category of compact metric spaces and non-expansive maps:

Problem 1. not cocomplete: no coproduct of two singletons.

Remedy: allow distance ∞ .

Definition

A metric (in this talk) is a map $d: X \times X \rightarrow [0, \infty]$ s.t.

- \blacktriangleright (Symmetry) $d(x, y) = d(y, x)$.
- \blacktriangleright (Reflexivity) $d(x, x) = 0$.
- ▶ (Separatedness) $d(x, y) = 0$ implies $x = y$.
- ▶ (Triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$.

The category of compact metric spaces and non-expansive maps:

Problem 2. not complete: no countable power of a two-element metric space.

Reason: the topology induced by the product metric $(=$ sup metric) is not the product topology, and is not compact.

Remedy: have the topology **not necessarily induced** by the metric, but just compatible.

Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X together with a metric $d: X \times X \rightarrow [0, \infty]$ that is lower semicontinuous, i.e. that is continuous with respect to the upper topology of $[0, \infty]$.

(They did not require symmetry and separatedness.)

Upper topology of $[0, \infty]$: generated by $(u, \infty]$, $u \in [0, \infty]$.

Lower semicontinuity of d can also be expressed as:

$$
d(x_0,y_0)\leq \liminf_{\substack{x\to x_0\\y\to y_0}}d(x,y).
$$

Small perturbations may yield great increments in distances, but not great decrements.

Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X together with a metric $d: X \times X \rightarrow [0, \infty]$ that is lower semicontinuous, i.e. that is continuous with respect to the upper topology of $[0, \infty]$.

(They did not require symmetry and separatedness.)

Upper topology of $[0, \infty]$: generated by $(u, \infty]$, $u \in [0, \infty]$.

Lower semicontinuity of d can also be expressed as:

$$
d(x_0,y_0)\leq \liminf_{\substack{x\to x_0\\y\to y_0}}d(x,y).
$$

Small perturbations may yield great increments in distances, but not great decrements.

Example: any compact metric space.

Instead of compact metric spaces...

Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X together with a metric $d: X \times X \rightarrow [0, \infty]$ that is lower semicontinuous, i.e. that is continuous with respect to the upper topology of $[0, \infty]$.

(They did not require symmetry and separatedness.)

Upper topology of $[0, \infty]$: generated by $(u, \infty]$, $u \in [0, \infty]$.

Lower semicontinuity of d can also be expressed as:

$$
d(x_0,y_0)\leq \liminf_{\substack{x\to x_0\\y\to y_0}}d(x,y).
$$

Small perturbations may yield great increments in distances, but not great decrements.

Example: any compact Hausdorff space where every pair of distinct points has distance 1.

Instead of compact metric spaces...

Definition (Hofmann, Reis, 2018)

A metric compact Hausdorff space X is a compact Hausdorff space X together with a metric $d: X \times X \rightarrow [0, \infty]$ that is lower semicontinuous, i.e. that is continuous with respect to the upper topology of $[0, \infty]$.

(They did not require symmetry and separatedness.)

Upper topology of $[0, \infty]$: generated by $(u, \infty]$, $u \in [0, \infty]$.

Lower semicontinuity of d can also be expressed as:

$$
d(x_0,y_0)\leq \liminf_{\substack{x\to x_0\\y\to y_0}}d(x,y).
$$

Small perturbations may yield great increments in distances, but not great decrements.

Example: Any product of compact metric spaces, with the product metric $(=$ sup metric) and the product topology.

Theorem (Essentially Tholen 2009)

The category MetCH of metric compact Hausdorff spaces and non-expansive continuous maps is complete and cocomplete.

What other good categorical properties?

What about a well-behaved factorization system?

In most classes of algebras (groups, rings, monoids, Boolean algebras...),

- 1. morphisms have a (surjection, injection) factorization;
- 2. surjective morphisms $=$ regular epis $=$ strong epis;
- 3. injective morphisms $=$ monos;
- 4. surjective morphisms are stable under pullbacks.

Closed under arbitrary products and subalgebras \Rightarrow regular.

Definition

A category C with finite limits is regular if

- 1. every morphism has a (strong epi, mono) factorization;
- 2. the pullback of a strong epi along any morphism is a strong epi.

In any regular category, strong epi $=$ regular epi.

Closed under products, subalgebras, *homomorphic images* \Rightarrow Barr-exact.

The category of topological spaces is **not** regular.

A continuous function has different (surjection, injection) factorizations.

The two "extremal" cases are: equip $f[X]$ with the...

quotient topology induced by X : subspace topology induced by Y :

(strong epi, mono) factorization. (epi, strong mono) factorization.

Strong epis (= quotients maps) are **not** stable under pullbacks (see a counterexample in Borceaux' HCA2). Therefore, Top is not regular. **quotient topology induced by** $\ X:$ subspace topology induced by $Y:$

(strong epi, mono) factorization. (epi, strong mono) factorization.

However, Top is coregular (e.g. [Barr, Pedicchio, 1995]): strong monos $($ = embeddings) are stable under pushouts.

quotient topology induced by X_1 subspace topology induced by $|Y_1\rangle$

(strong epi, mono) factorization. (epi, strong mono) factorization.

Definition

A category C with finite colimits is *coregular* if

- 1. every morphism has an (epi, strong mono) factorization;
- 2. the pushout of a strong mono along any morphism is a strong mono.

Coregularity \approx given an embedding $X \hookrightarrow Y$ and a morphism $X \to X'$, we can replace X by X' inside Y.

Rough rule of thumb:

- 1. Categories of "algebras" are regular (and maybe even Barr-exact).
- 2. Categories of "spaces" are coregular (and maybe even Barr-coexact).

Metric compact Hausdorff spaces fall in the second class.

Given a morphism $f: X \to Y$ in MetCH, we equip $f[X]$ with the metric and topology induced by Y :

(epi, strong mono) factorization.

Theorem

In MetCH

- 1. surjective morphisms $=$ epis;
- 2. embeddings $=$ strong monos $=$ regular monos.

Theorem

MetCH is coregular.

I.e.: embeddings are stable under pushouts.

Example: walking distance $+$ add a train connection.

$$
d(\text{Milan}, \text{Rome}) = 138
$$

$$
d(\text{Milan}, \text{Naples}) = 184
$$

$$
d(\text{Rome}, \text{Naples}) = 51
$$

 d' (Milan, Rome) = 3

$$
d'(\text{Milan}, \text{Naples}) = 54
$$

 d' (Rome, Naples) = 51

Theorem

MetCH is Barr-coexact.

Roughly speaking, Barr-coexactness means:

For every surjective morphism $X + X \rightarrow Z$ satisfying certain properties ("reflexivity", "symmetry", "transitivity"), there is a closed subspace $A \subseteq X$ s.t. Z is obtained from $X + X$ by identifying, for each $y \in A$, the two copies of y in $X + X$.

We sketch the proof of the theorem.

Encoding of surjective morphisms: a surjective morphism

$$
f: X \twoheadrightarrow Y,
$$

can be encoded by the function

$$
\gamma_f: X \times X \longrightarrow [0, \infty]
$$

$$
(x_1, x_2) \longmapsto d_Y(f(x_1), f(x_2)).
$$

Properties of γ_f ?

1. It is a *premetric* ($=$ symmetric, reflexive, triangle inequality, but distinct points may have distance 0). Moreover, it is below d_x , i.e.

$$
\gamma(x_1,x_2)\leq d_X(x_1,x_2).
$$

We say that it is a sub-premetric of X .

2. It is lower semicontinuous (= contin. wrt the upper top. of $[0, \infty]$).

Theorem

The isomorphism classes of surjective morphisms out of an object $X \in$ MetCH are in bijective correspondence with the lower semicontinuous sub-premetrics on X.

MetCH Barr-coexact: every internal equivalence corelation is a cokernel pair.

Given $X \in \mathsf{MetCH}$ and $A \hookrightarrow X$ an embedding.

The cokernel pair of $A \hookrightarrow X$ is the quotient $X + X \twoheadrightarrow (X + X)/\sim$, where \sim identifies, for each $a \in A$, the two copies of a.

This quotient has an associated lower semicontinuous sub-premetric

$$
(X+X)\times(X+X)\to[0,\infty].
$$

Internal binary corelation $=$ equivalence class of a surjective $X + X \rightarrow Z$. Equivalently, a lower semicontinuous sub-premetric γ on $X + X$.

- ▶ Reflexive: for all $i, j \in \{0, 1\}$ $d_X(x, y) \leq \gamma((x, i), (y, i))$.
- ▶ Symmetric: $\gamma((x, 0), (y, 1)) = \gamma((x, 1), (y, 0)).$
- ▶ Transitive: (under reflexivity and symmetry:) for all $x, y \in X$ with $\gamma((x, 0), (y, 1)) \neq \infty$ there is $z \in X$ such that $\gamma((x, 0), (y, 1)) = \gamma((x, 0), (z, 1)) + \gamma((z, 0), (y, 1)).$

Reflexive internal binary relation:

Reflexive internal binary corelation:

Theorem

For such a γ , for all $x, y \in X$ with $\gamma((x, 0), (y, 1)) \neq \infty$ there is $z \in X$ s.t. $\gamma((z, 0), (z, 1)) = 0$ and

$$
\gamma((x,0),(y,1)) = d_X(x,z) + d_X(z,y).
$$

Consequence: γ is the cokernel pair of the embedding ${z \in X \mid \gamma((z, 0), (z, 1)) = 0} \hookrightarrow X.$

Compactness is used crucially.

This concludes the sketch of the proof that the category MetCH of metric compact Hausdorff spaces is Barr-coexact.

[To sum up](#page-25-0)

Allowing ∞ measures and topology not induced by the metric \rightsquigarrow great categorical properties:

The category MetCH of metric compact Hausdorff spaces and continuous non-expansive maps is complete, cocomplete, Barr-coexact.

- ▶ Open question: is MetCH dually equivalent to a variety of possibly infinitary algebras? Equivalently: does MetCH have a regular injective regular cogenerator? (If so, then function symbols of infinite arity are probably necessary.)
- ▶ Requiring the compact Hausdorff topology to be induced by the metric \rightsquigarrow no infinite products.

But is it still finitely cocomplete finitely complete Barr-coexact?

▶ Other quantales?

MerCI