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Algebraic logic

Message

First-order logic can be done algebraically.

I.e.: the toolkit of the algebraic logician can be used also in the

first-order setting.

In this talk we will see an example: an algebraic version of Herbrand’s

theorem.

Marco Abbadini An algebraic version of Herbrand’s theorem 2 / 36



Theorem (Herbrand’s theorem, 1930 – for existential

statements)

A universal theory T proves a sentence ∃x α(x) with α quantifier-free if

and only if there are finitely many terms c1, . . . , cn such that T proves

α(c1) ∨ · · · ∨ α(cn).

Example.

Language: a relation symbol ≤, and two constant symbols max and min.

Theory: ≤ is a partial order, max is maximum, min is minimum.

▶ ∃x (max ≤ x).

▶ There is an element strictly between min and max:

∃x (min ≤ x ≤ max, x ̸= min, x ̸= max)
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Herbrand’s theorem is often formulated in this version for existential

statements, but Herbrand’s results cover all first-order formulas.
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I will present an algebraic version of Herbrand’s theorem for existential

statements.

How we got it: we wanted to know how to freely add one layer of

quantifier alternation depth to a Boolean doctrine...
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What are the algebras of classical first-order logic?

[First-order Boolean doctrines, going back to the work of Lawvere in the

’60s]
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Boolean algebras are precisely the Lindenbaum-Tarski algebras of

propositional theories; up to iso, Boolean algebras are precisely the

algebras of the form

L-Form/≡Σ,

where L is a propositional language (= a set of propositional variables),

and Σ is a propositional theory (a set of L-formulas).
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We do the same for classical first-order logic.
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How do we view propositional logic inside first-order logic? A

“propositional variable” becomes a nullary relation symbol.
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In the first-order setting, the language L of propositional variables is

replaced by a set L of relation symbols (with their associated arity).
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For simplicity, we consider the case where we do not have function

symbols.
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Roughly speaking: first-order Boolean doctrines are precisely the algebras

of the form

L-Form/ ≡Σ

for L ranging among all sets of relation symbols, and Σ among all sets of

L-sentences.

But what algebraic structure are we considering here?
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Fix an infinite set of variables Var.
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A first-order Boolean doctrine (modelling L-Form/≡Σ) is a many-sorted

algebras with the following data:

1. A family of Boolean algebras, one for each finite subset X of Var

(the Boolean algebra of formulas whose free variables belong to X ),

linked by

2. substitutions and

3. quantifiers.

(We avoid equality, for simplicity.)
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Definition

A first-order Boolean doctrine P (over an empty functional language)

consists of

1. [Family of Boolean algebras] For X ⊆fin Var, we have a Boolean

algebra P(X ).

to be continued...
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2. [Substitutions] For X ,Y ⊆fin Var and σ : X → Y , we have a

Boolean homomorphism Pσ : P(X ) → P(Y )...(
We denote Pσ(α) also by α

[
(σ(x)/x)x∈X

])
... such that

▶ (Functoriality: identity) For all X ⊆fin Var,

PidX = idP(X ), i.e. α
[
(x/x)x∈X

]
= α.

▶ (Functoriality: composition) For all X ,Y ,Z ⊆fin Var, for all

f : X → Y and g : Y → Z , we have

Pg◦f = Pg ◦ Pf ,

i.e. α
[
(f (x)/x)x∈X

][
(g(y)/y)y∈Y

]
= α

[(
gf (x)/x

)
x∈X

]
.

to be continued...

In general, one would fix a priori a functional language F, and then the

substitutions are defined for each σ : X → Term(Y )
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3. For all X ⊆fin Var, y ∈ Var \ X , α ∈ P(X ∪ {y}),
▶ there is a (necessarily unique) element ∀y α ∈ P(X ) s.t., for all

β ∈ P(X ),

β ≤ ∀y α in P(X ) ⇐⇒ PX ↪→X∪{y}(β) ≤ α in P(X ∪ {y});

β[(x/x)x∈X ]

▶ there is a (necessarily unique) element ∃y α ∈ P(X ) s.t., for all

β ∈ P(X ),

∃y α ≤ β ⇐⇒ α ≤ PX ↪→X∪{y}(β);

and, moreover,...
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...for all X ,X ′ ⊆fin Var, for all σ : X → X ′, for all y ∈ Var \ (X ∪X ′), for

all α ∈ P(X ∪ {y}),
▶

Pσ(∀y α) = ∀y Pσ∪id{y} : X∪{y}→X ′∪{y}(α).

i.e.

(∀y α)
[
(σ(x)/x)x∈X ] = ∀y

(
α
[
(σ(x)/x)x∈X

])
.

▶ and analogously for ∃.
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Folklore: first-order Boolean doctrines are the algebras of classical

first-order logic.

Disclaimer: the “classical first-order logic” meant here is the one whose

semantics allows the usage of empty structures.

If one doesn’t want the empty structures, they can impose on the

first-order Boolean doctrine “∃x⊤ = ⊤”.
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Outside this talk, first order Boolean doctrines are defined as certain

contravariant functors

Cop → BA

from a category C with finite products to the category of Boolean

algebras.

What for us is “a finite set of variables” (a “context”) becomes an object

in a category C.

1. This smoothly covers also the many-sorted first-order logic.

2. There is no way to count the number of variables in a context.

For this talk we will stick to the presentation in the previous slides:

▶ we have an infinite set Var of variables,

▶ we have a family of Boolean algebras indexed by the finite sets of

Var

▶ linked by substitutions and quantifiers.
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First-order Boolean algebras (over a fixed functional language F) form a

variety of many-sorted algebras!

(One sort for each X ⊆fin Var.)
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Therefore, for example, we have free algebras!

This allows us to frame Herbrand’s theorem algebraically.
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Theorem (Herbrand’s theorem, 1930 – for existential

statements)

A universal theory T proves a sentence ∃x α(x) with α quantifier-free if

and only if there are finitely many terms c1, . . . , cn such that T proves

α(c1) ∨ · · · ∨ α(cn).

Universal theory↭ Boolean doctrine: family of Boolean algebras linked

by substitutions satisfying functoriality (no quantifiers).

Universal sentences in the theory↭ element in the Boolean doctrine.

∀x α(x) = ⊤ in P(∅) e’ equivalente a α(x) = ⊤ in P(x).

What is ∃x α(x) then?

Short answer: a certain element in the free first-order Boolean doctrine

over the Boolean doctrine corresponding to T .
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The forgetful functor from first-order Boolean doctrines over F to

Boolean doctrines over F has a left adjoint.

It maps a Boolean doctrine P to the first-order Boolean doctrine denoted

P∀∃.

P∀∃ is obtained by freely adding all quantifiers modulo the axioms of

first-order Boolean doctrines and modulo all equations in the language of

Boolean doctrines holding in P.
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Theorem (Herbrand’s theorem for ∃-statements)

A universal theory T proves ∃x α(x) with α q.f. if and only if there are

finitely many terms c1, . . . , cn such that T proves α(c1) ∨ · · · ∨ α(cn).

Theorem (Algebraic version, A., Guffanti, 2024)

Let P be a Boolean doctrine over a functional language F. For every
variable x, and every α ∈ P({x}), we have

∃x α = ⊤ in P∀∃(∅)

if and only if there are finitely many constants c1, . . . , cn ∈ F such that

α[c1/x] ∨ · · · ∨ α[cn/x] = ⊤ in P(∅).

(T cannot be an arbitrary theory ⇝ we need freeness of P∀∃ over P)

(Herbrand’s theorem holds for inclusive logic. terms ⇝ constants)
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We actually proved in the setting of first-order Boolean doctrines as

certain functors Cop → BA.

Thus, it covers also many-sorted logic.
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Sketch of the proof
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The difficult implication is: suppose

∃x α = ⊤;

prove that there are finitely many constants c1, . . . , cn ∈ F such that

α[c1/x] ∨ · · · ∨ α[cn/x] = ⊤.
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We prove the contrapositive: Suppose that for all constants

c1, . . . , cn ∈ F we have

α[c1/x] ∨ · · · ∨ α[cn/x] ̸= ⊤.

We prove that

∃x α ̸= ⊤;

We build a model of the Boolean doctrine P in which ∃x α does not hold.

Sketch:

1. The hypothesis means that the “existential ideal” generated by α is

proper. Or, equivalently, that the “universal filter” generated by ¬α
is proper.

2. Then we construct a model in a way similar to Henkin’s proof of

Gödel’s completeness theorem (which, in one of its equivalent

formulations, says that a consistent theory has a model). This will

produce a model in which ∀x ¬α is valid, i.e. in which ∃x α fails.
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Definition

A model of a first-order Boolean doctrine P (no funct. symb.) consists of

1. a set M,

2. for each X ⊆ω Var and α ∈ P(X ), an element JαK ∈ P(MX )

such that

▶ Jα ∨X βK = JαK ∪ JβK, and similarly for ∧X , ¬X , ⊤X and ⊥X ;

▶ for every σ : X → Y and α ∈ P(X ),

JPσ(α)K = {b ∈ MY | b ◦ σ ∈ JαK};

▶ for every X ⊆ω Var, y ∈ Var \ X and α ∈ P(X ∪ {y}),

J∀y αK = {a ∈ MX | for all b ∈ M we have “a ∪ (y 7→ b)′′ ∈ JαK},

J∃y αK = {a ∈ MX | there is b ∈ M s.t. “a ∪ (y 7→ b)′′′ ∈ JαK},

with a ∪ (y 7→ b) ∈ MX∪{y} the map that on X is a, and in y is b.
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Definition

A model of a first-order Boolean doctrine P (no funct. symb.) consists of

1. a set M,

2. for each X ⊆ω Var and α ∈ P(X ), an element JαK ∈ P(MX )

such that

▶ Jα ∨X βK = JαK ∪ JβK, and similarly for ∧X , ¬X , ⊤X and ⊥X ;

▶ for every σ : X → Y and α ∈ P(X ),

JPσ(α)K = {b ∈ MY | b ◦ σ ∈ JαK};
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Suppose that for all constants c1, . . . , cn ∈ F we have

α[c1/x] ∨ · · · ∨ α[cn/x] ̸= ⊤.

We prove that

∃x α ̸= ⊤;

We build a model of the Boolean doctrine P in which ∃x α does not hold.

Sketch: We produce a model of the Boolean doctrine P where ∃x α fails,

i.e. JαK = ∅.

The set M identifies a first-order Boolean doctrine, in which the Boolean

algebra associated to X ⊆fin is P(MX ). Recall that, for every X , we have

a function

J−KX : P(X ) → P(MX ).

The fact that M is a model says precisely that this gives a

homomorphism of Boolean doctrines

P → P(M−).
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Then one uses the universal property

P P∀∃

P(M−)

∃!

and from the fact that JαK = ∅, one deduces that ∃x α = ⊥ in P∀∃.

[End of sketch of proof]
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Herbrand’s theorem: “only little can be proved”. Proof theory is very

good for this: e.g. with cut elimination.

What tools do we have in the algebraic setting?

We use models (= counterexamples), and to produce them, we used a

proof similar to the proof of Gödel completeness theorem.
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▶ With models we use the axiom of choice (in the Henkin-style

proof).

Instead, Herbrand’s original proof was constructive.

Is there a doctrinal “choice-free” proof?

(Maybe using canonical extensions? / Boolean valued models)

Maybe the proof then will be easier.
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▶ We are working on “the Stone dual” of Herbrand’s theorem for

existential statements.

Our current approach: to deduce it from the algebraic version. Will

it be possible to derive it directly? Will it be easier?

Thank you!
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