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Algebraic logic

Message

First-order logic can be done algebraically.

l.e.: the toolkit of the algebraic logician can be used also in the
first-order setting.

In this talk we will see an example: an algebraic version of Herbrand's

theorem.
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Theorem (Herbrand's theorem, 1930 — for existential

statements)

A universal theory T proves a sentence 3x a(x) with a quantifier-free if
and only if there are finitely many terms c, ..., c, such that T proves
ala) V- Va(c).

Example.

Language: a relation symbol <, and two constant symbols max and min.

Theory: < is a partial order, max is maximum, min is minimum.

» Ix (max < x).

» There is an element strictly between min and max:
Ix (min < x < max, x # min, x # max)
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Herbrand's theorem is often formulated in this version for existential
statements, but Herbrand's results cover all first-order formulas.
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| will present an algebraic version of Herbrand's theorem for existential

statements.

How we got it: we wanted to know how to freely add one layer of
quantifier alternation depth to a Boolean doctrine...
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What are the algebras of classical first-order logic?

[First-order Boolean doctrines, going back to the work of Lawvere in the
"60s]
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Boolean algebras are precisely the Lindenbaum-Tarski algebras of
propositional theories; up to iso, Boolean algebras are precisely the
algebras of the form

L-Form/=y,
where L is a propositional language (= a set of propositional variables),
and X is a propositional theory (a set of L-formulas).
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We do the same for classical first-order logic.
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How do we view propositional logic inside first-order logic? A
“propositional variable” becomes a nullary relation symbol.

Marco Abbadini An algebraic version of Herbrand's theorem



In the first-order setting, the language £ of propositional variables is
replaced by a set £ of relation symbols (with their associated arity).
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For simplicity, we consider the case where we do not have function
symbols.
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Roughly speaking: first-order Boolean doctrines are precisely the algebras

of the form
L-Form/ =y

for £ ranging among all sets of relation symbols, and ¥ among all sets of

L-sentences.

But what algebraic structure are we considering here?
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Fix an infinite set of variables Var.
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A first-order Boolean doctrine (modelling £-Form/=y) is a many-sorted
algebras with the following data:

1. A family of Boolean algebras, one for each finite subset X of Var
(the Boolean algebra of formulas whose free variables belong to X),
linked by

2. substitutions and

3. quantifiers.

(We avoid equality, for simplicity.)
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Definition
A first-order Boolean doctrine P (over an empty functional language)

consists of
1. [Family of Boolean algebras] For X Cg, Var, we have a Boolean

algebra P(X).

to be continued...

Marco Abbadini An algebraic version of Herbrand's theorem 15 / 36



Marco Abbadini

2. [Substitutions] For X, Y Cgy, Var and o: X — Y, we have a
Boolean homomorphism P, : P(X) — P(Y)...
(We denote P, (a) also by a[(7()/x)xex])
. such that
» (Functoriality: identity) For all X Cg, Var,

Pidx = idp(x), i.e. Oz[(x/x)xex] = Q.

» (Functoriality: composition) For all X,Y,Z Cg, Var, for all
f: X—Yandg:Y — Z, we have

Pgor = Pg o Py,

e, (0 uex] [(E0)yev] = af (s09))

to be continued...

x€Xj| ’

In general, one would fix a priori a functional language F, and then the
substitutions are defined for each o: X — Term(Y)
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3. For all X Cg, Var, y € Var \ X, a € P(X U {y}),
> there is a (necessarily unique) element Vy o € P(X) s.t., for all
B € P(X),

B<Vya in P(X) < Pxoxup3(B8) <a in P(XU{y});

;3[(X/X)xex]

> there is a (necessarily unique) element 3y o € P(X) s.t., for all
B € P(X),

Jya<B <= a<Pxoxuy(B)

and, moreover,...
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An algebraic version of Herbrand's theorem 17 / 36



|
.for all X; X’ Cg,, Var, for all o: X — X/, for all y € Var\ (XU X’), for
all . e P(X U {y}),

>

Po(Vy @) = Vy Pouid,,, - xugy}—xugy(e).

(Vy a)[(?®)/x)xex] = Wy (af(?(/x)xex])-

» and analogously for 3.
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Folklore: first-order Boolean doctrines are the algebras of classical

first-order logic.

Disclaimer: the “classical first-order logic” meant here is the one whose

semantics allows the usage of empty structures.

If one doesn't want the empty structures, they can impose on the
first-order Boolean doctrine “dIxT = T".
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QOutside this talk, first order Boolean doctrines are defined as certain
contravariant functors
C°? — BA

from a category C with finite products to the category of Boolean
algebras.

What for us is “a finite set of variables” (a “context”) becomes an object
in a category C.

1. This smoothly covers also the many-sorted first-order logic.

2. There is no way to count the number of variables in a context.
For this talk we will stick to the presentation in the previous slides:

» we have an infinite set Var of variables,

» we have a family of Boolean algebras indexed by the finite sets of
Var

» linked by substitutions and quantifiers.
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First-order Boolean algebras (over a fixed functional language F) form a
variety of many-sorted algebras!

(One sort for each X Cg, Var.)
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Therefore, for example, we have free algebras!

This allows us to frame Herbrand's theorem algebraically.
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Theorem (Herbrand's theorem, 1930 — for existential

statements)

A universal theory T proves a sentence 3x a(x) with o quantifier-free if
and only if there are finitely many terms c, . .., c, such that T proves
alc) V- Va(e).

Universal theory «~+ Boolean doctrine: family of Boolean algebras linked
by substitutions satisfying functoriality (no quantifiers).

Universal sentences in the theory «~+ element in the Boolean doctrine.

Vxa(x) =T in P(@) €' equivalente a a(x) = T in P(x).

What is Ix a(x) then?

Short answer: a certain element in the free first-order Boolean doctrine
over the Boolean doctrine corresponding to 7.
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The forgetful functor from first-order Boolean doctrines over F to
Boolean doctrines over F has a left adjoint.

It maps a Boolean doctrine P to the first-order Boolean doctrine denoted
P,

P"3 is obtained by freely adding all quantifiers modulo the axioms of
first-order Boolean doctrines and modulo all equations in the language of
Boolean doctrines holding in P.
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Theorem (Herbrand's theorem for 3-statements)

A universal theory T proves 3x a(x) with « q.f. if and only if there are
finitely many terms c, . .., ¢, such that T proves a(c1) V --- V a(cp).

Theorem (Algebraic version, A., Guffanti, 2024)

Let P be a Boolean doctrine over a functional language F. For every
variable x, and every o € P({x}), we have

Ixa=T inP™(2)
if and only if there are finitely many constants c1,...,c, € I such that

afa/x]V---Vala/kl=T inP(2).

(T cannot be an arbitrary theory ~ we need freeness of P2 over P)

(Herbrand's theorem holds for inclusive logic. terms ~+ constants)
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We actually proved in the setting of first-order Boolean doctrines as
certain functors C°P? — BA.

Thus, it covers also many-sorted logic.
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Sketch of the proof
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The difficult implication is: suppose
dxa=T;
prove that there are finitely many constants cy, ..., ¢, € F such that

afex] V- Vale] = T.
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We prove the contrapositive: Suppose that for all constants
a,...,cn € F we have

a[cl/x] VeV a[cn/x] 7é T.

We prove that
Ixa#T;

We build a model of the Boolean doctrine P in which dx o does not hold.

Sketch:

1. The hypothesis means that the “existential ideal" generated by « is
proper. Or, equivalently, that the “universal filter" generated by -«
is proper.

2. Then we construct a model in a way similar to Henkin's proof of
Godel's completeness theorem (which, in one of its equivalent
formulations, says that a consistent theory has a model). This will
produce a model in which Vx -« is valid, i.e. in which Ix « fails.
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Definition
A model of a first-order Boolean doctrine P (no funct. symb.) consists of
1. aset M,
2. for each X C,, Var and a € P(X), an element [a] € 22(MX)
such that
» [aVx f] = [a] UA], and similarly for Ax, =x, Tx and Lx;
> for every o: X = Y and o € P(X),

[Po(a)]={be MY |boo € [a]};
» for every X C,, Var, y € Var \ X and e € P(X U {y}),
[Vya] = {a € MX | for all b€ M we have “aU (y — b)" € [a]},

[By o] = {a € MX |thereis be M s.t. “aU(y — b)” € [a]},

with aU (y — b) € MXYIr} the map that on X is a, and in y is b.
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Definition

A model of a first-erder Boolean doctrine P (no funct. symb.) consists of
1. aset M,
2. for each X C,, Var and a € P(X), an element [a] € 2(MX)
such that
» [aVx 8] = [a] U [A], and similarly for Ax, =x, Tx and Lx;
> for every o: X — Y and a € P(X),

[P,(x)] ={b€ mY | boo € [a]};
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Suppose that for all constants ¢y, ..., c, € F we have
afa/x] V- Vala/x] #T.
We prove that
Ixa#T;
We build a model of the Boolean doctrine P in which 3x o does not hold.

Sketch: We produce a model of the Boolean doctrine P where dx « fails,
ie. [o] = 2.

The set M identifies a first-order Boolean doctrine, in which the Boolean
algebra associated to X Cgy, is P(MX). Recall that, for every X, we have
a function

[-]x: P(X) = P(MX).

The fact that M is a model says precisely that this gives a
homomorphism of Boolean doctrines

P P(M).
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Then one uses the universal property

P—— P¥

o

P(M™)

and from the fact that [a] = &, one deduces that Ixa = L in P¥,

[End of sketch of proof]
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Herbrand's theorem: “only little can be proved”. Proof theory is very

good for this: e.g. with cut elimination.
What tools do we have in the algebraic setting?

We use models (= counterexamples), and to produce them, we used a
proof similar to the proof of Godel completeness theorem.
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> With models we use the axiom of choice (in the Henkin-style
proof).
Instead, Herbrand's original proof was constructive.
Is there a doctrinal “choice-free” proof?
(Maybe using canonical extensions? / Boolean valued models)
Maybe the proof then will be easier.
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» We are working on “the Stone dual” of Herbrand’s theorem for
existential statements.

Our current approach: to deduce it from the algebraic version. Will
it be possible to derive it directly? Will it be easier?

Thank you!
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