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Describe free Heyting algebras.

Difficult.

Free algebra on 1 generator: infinite.

Free algebra on 2 generators: a lattice-theoretic description is notoriously

difficult.
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1. Ghilardi provided a step-by-step description of the free Heyting

algebra over a finite set {x1, . . . , xn}.
▶ First describe the algebra of formulas with implication depth 0: the

free bounded distributive lattice generated by n elements.
▶ Suppose you have a description for the algebra of formulas with

implication depth at most k. Then I give you a description of the

algebra of formulas with implication depth at most k + 1.

(Every free Heyting algebra over a finite set is a biHeyting algebra.)

It’s a dual description. (Birkhoff’s dual. for finite bdd. distr. lattices.)

2. Rodrigo Almeida generalized it to free Heyting algebras over a set of

arbitrary cardinality. And more generally, for the free Heyting algebra

over a given bounded distributive lattice.

Set HA

BDL

FreeHA

FreeBDL FreeHA/BDL

It’s a dual description. (Priestley duality for bdd. distr. lattices.)
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Let’s do it purely algebraically.
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My motivation:

1. Describe the free algebras of first-order classical logic. (Algebraic

version of Herbrand’s theorem.) Describe how to freely add one layer

of quantifier-alternation depth at a time.

2. Pitts’ problem: is every Heyting algebra the algebra of truth values

of some topos? Pataraia claimed to have a positive answer, using a

construction that adds quantifiers iteratively.

Maybe the case of implications is analogous.
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Let’s go!
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Let L be a bounded distributive lattice. We want to describe

FreeHA/BDL(L).

This will be the set of all Heyting combinations of elements from L,

modulo the axioms of Heyting algebras and the axioms saying that the

bounded lattice operations in L have to be preserved.

Step-by-step: We start by describing the set

L ↪→ L→ ↪→ FreeHA/BDL(L).

of elements of implication-depth at most 1: i.e., bounded lattice

combinations of elements of the form

a → b

for a, b ∈ L. (This includes L itself, since a = ⊤ → a.)
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From a logical perspective

Suppose you have a set X of propositional variables, and a set T (a

theory) of entailments

φ(x1, . . . , xn) ⊢ ψ(x1, . . . , xm),

between bounded lattice combinations of elements from X .

We want to describe which entailment of the form

n∧
i=1

(ai → bi ) ⊢
m∨
j=1

(ci → di )

(with ai , bi , cj , dj ∈ X and where → is an intuitionistic implication)

follow.

In terms of what entailments

φ(x1, . . . , xn) ⊢ ψ(x1, . . . , xm),

(between bdd. latt. combinations of elements from X ) follow from T .
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Let L be a bounded distributive lattice. Let L ↪→ L→ be the inclusion of

L into the first layer of implication depth.

Example

In L→ we have

⊤ → b ≤ c → d

if and only if in L...

b ∧ c ≤ d .
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Example

In L→ we have

a → b ≤ ⊥

if and only if in L... {
a = ⊤,
b = ⊥.
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Example

In L→ we have

a → b ≤ d

if and only if in L... {
d ∨ a = ⊤,
b ≤ d .
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Example

In L→ we have

a → b ≤ c → d

if and only if in L {
c ≤ a ∨ d ,

c ∧ b ≤ d .
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Example

In L→ we have

a → ⊥ ≤ c → ⊥

if and only if in L...

c ≤ a.
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Example

In L→ we have

a → ⊥ ≤ c → d

if and only if in L

c ≤ d ∨ a.
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In L→ we have

(a1 → b1) ∧ b2 ≤ ⊥

if and only if in L... {
b2 ≤ a1,

b1 ∧ b2 = ⊥.
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In L→ we have

(a1 → b1) ∧ (a2 → b2) ≤ ⊥

if and only if in L... 
a1 ∨ a2 = ⊤
b1 ≤ a2

b2 ≤ a1

b1 ∧ b2 = ⊥
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Theorem

In L→ we have
n∧

i=1

(ai → bi ) ≤ c → d

(with ai , bi , c , d ∈ L) iff, for all S ⊆ {1, . . . , n},

c ∧
∧
i∈S

bi ≤ d ∨
∨

i∈{1,...,n}\S

ai .

I.e.: in the Boolean envelope of L

n∧
i=1

(ai ⇝ bi ) ≤ c ⇝ d .

Here, ⇝ denotes the classical implication in the Boolean envelope of L.
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Example

In L→ we have

⊤ ≤ (c1 → ⊥) ∨ (c2 → ⊥)

if and only if in L... there are e1, e2 such that
⊤ = e1 ∨ e2

e1 ∧ c1 = ⊥
e2 ∧ c2 = ⊥
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In L→ we have

⊤ → b ≤ (c1 → d1) ∨ (c2 → d2)

if and only if in L... there are e1, e2 such that
b ≤ e1 ∨ e2,

e1 ∧ c1 ∧ b ≤ d1,

e2 ∧ c2 ∧ b ≤ d2.
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Theorem

In L→ we have
n∧

i=1

ai → bi ≤
m∨
j=1

cj → dj

(with ai , bi , cj , dj ∈ L) iff ∃e1, . . . , em ∈ L s.t., for all S ⊆ {1, . . . , n},∧
i∈S

bi ≤ e1 ∨ · · · ∨ em ∨
∨

i∈{1,...,n}\S

ai

for all j ej ∧ cj ∧
∧
i∈S

bi ≤ dj ∨
∨

i∈{1,...,n}\S

ai

iff ∃e1, . . . , em ∈ L such that (in the Boolean envelope of L)
n∧

i=1

(ai ⇝ bi ) ≤
m∨
j=1

ej ,

for all j ej ≤

(
n∧

i=1

(ai ⇝ bi )

)
⇝ (cj ⇝ dj).
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If we have a lattice L, and we want to describe the free Heyting algebra

H over L by describing layer by layer, what should we do?

We add freely the first layer of implications (theorem in the previous

slide).

Then we add further layers preserving the previous implications (we are

working now on this).
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We describe how to add a layer of Heyting implication to a bounded

distributive lattice, and then (hopefully) show how to continue iteratively.

Thank you!
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	Let's go!

