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Algebraic approach to measure theory.

@ T. Kroupa, V. Marra. The two-sorted algebraic theory of states, and the
universal states of MV-algebras. Journal of Pure and Applied Algebra, 2021.
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Measure space:

(Q, F 7[[1,:,/_-'—)[0,00])
set o-algebra measure

E.g.:
(R, {Lebesgue measurable sets}, Lebesgue measure)
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Let (Q, F, ) be a measure space. A function f: Q — R is called
integrable if it is F-measurable and [,|f|dp < oc.

LYu) = {f: Q=R | f is integrable}.
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@ T. Kroupa, V. Marra. The two-sorted algebraic theory of states, and the
universal states of MV-algebras. Journal of Pure and Applied Algebra, 2021.

Idea: to see an integral
/: LHu) =R
as a two-sorted algebra, with
» L£1(u) the content of one sort (and an algebra of its own),

> R the content of the other sort (and an algebra of its own),

> [ the interpretation of a unary function symbol between the two
sorts.

What algebraic structure does £!(1) have?

E.g.: it has at least a vector space structure, obtained via pointwise
application of the vector space structure of R.

What is the algebraic structure common to all £1(u)’s?
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Example

Let (Q,F, 1) be a measure space. f,g: Q — R integrable functions.
Then

> f + g is integrable,
> f-g may be non-integrable. (E.g.: @ =(0,1), f(x) = g(x) = 35.)

The addition +: R? — R, applied pointwise, preserves integrability. Not
the multiplication -: R? — R.

Preserving integrability := returning integrable functions when applied to
integrable functions.

Definition
A function 7: R® — R (with x a cardinal) preserves integrability if for

every measure space (Q, F, 1) and all (f; € £1(u))ie, we have
T((f)iex) € L1 (1)-
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Clone on R of functions R® — R that preserve integrability?

Simple set of generators?

Question 3

Axiomatization of the variety generated by R?

For every measure space (Q, F, i), £1(x) belongs to this variety.
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Question 1:
which functions R"” — R preserve integrability?
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Theorem (A., 2020)

For every n € N, a function 7: R" — R preserves integrability if and only
if it is Borel measurable and sublinear.

Borel measurable := the preimage of a Borel measurable set is Borel

measurable.
Sublinear := there are positive real numbers A1, ..., A\, such that, for
every x € R”,
n
()l <> Ailal-
i=1
e, T..

» is at most linear in a neighbourhood of oo;
» is at most linear in a neighbourhood of 0;

» is bounded on bounded sets.
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Example
All linear operations are Borel measurable and sublinear, and hence
preserve integrability:

» The addition +: R2 — R;
» For every A € R, the scalar multiplication A - —: R — R by A;
» The constant 0: R® — R.

le.: every £L(p) is a vector space: all linear operations are well-defined

(via pointwise application).
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Example
The square function (—)?: R? — R is Borel measurable but not sublinear
(at infinity it grows more than linearly).

1

The square function does not preserve integrability, i.e.,
f integrable # f2 integrable.

Counterexample: take a big f on a small measure space.
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Example

The square root function y/|—|: R — R is Borel measurable but not
sublinear, because no linear function bounds it close to zero.

+
The square root function does not preserve integrability, i.e.,

f integrable # \/|f| integrable.

Counterexample: Take a small f on a big measure space.
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Example

max, min: R? — R are Borel measurable and sublinear:
Imax{x, y}| < [x| + [y].

b
max and min preserve integrability, i.e.,

f,g integrable = sup{f, g}, inf{f, g} integrable.

Essentially: every £1(u) has a lattice structure induced by R.
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Example
The constant 1: R — R is Borel measurable but not sublinear (at 0 it is
not 0.)

+

1 does not preserve integrability. E.g.: the constant function 1 on R is
not integrable.
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For arbitrary arity:
Theorem (A., 2020)
For every cardinal k, a function 7: R* — R preserves integrability if and

only if T is cylinder measurable and sublinear.

Cylinder (or product) o-algebra on R* := the smallest o-algebra that
makes all projections measurable = the o-algebra generated by the sets

H{A if i =iy
o R if i io;
for ip € kK and A C R Borel.

For k finite or countable, cylinder o-algebra on R* = Borel o-algebra on
R*.

Sublinear := there are distinct i1, ...k € Kk s.t., for every x € R”,
k
7)< > Xl -
Jj=1
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Example
While the countable supremum is not well-defined on R, the truncated

countable supremum
(v, x1,x2, ... ) — sﬁoﬁ) min{y, x;}
i=
is well-defined. It is cylinder (= Borel) measurable and sublinear:
sipmin{y. i} < |y| + al-
b

It preserves integrability, i.e.:

g, f,f,... integrable = sup®®, inf{g, f;} integrable.
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A function 7: R® — R (with x a cardinal) preserves integrability over
finite measure spaces if for every measure space (2, F, u) with
w(Q) < oo and all (f; € LY(1))ier we have 7(()icx) € L1(1).
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Theorem (A., 2020)

For every cardinal k, a function 7: R® — R preserves integrability over
finite measure spaces if and only if it is cylinder measurable and subaffine.

Subaffine = there are positive real numbers k, A1, ..., A\, such that, for
every x € R,

()] < k+ ) Nilxil-
i=1
ie., T..

» is at most linear in a neighbourhood of oo;
> i " . o £ o

» is bounded on bounded sets.
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The function /|—|: R — R is measurable, (not sublinear, but) subaffine.
Hence, it preserves integrability over finite measure spaces.

The constant function 1: R® — R preserves integrability over finite
measure spaces.
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Question 2:
set of generators?
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Theorem (A., 2020)

The infinitary clone on R of functions that preserve integrability (=
measurable + sublinear) is generated by

» “linear” operations:
> 0;
=
> for A € R, the scalar multiplication by A, i,e. R - R, x — X - x;

» the truncation by 1, ie. R - R, x — x A 1;

» the truncated countable supremum

(y7X17X27 oo ) = sfjopl){min{y,xn}}.
n—=
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Theorem (A., 2020)
The infinitary clone on R of functions that preserve integrability over
finite measure spaces (= measurable + subaffine) is generated by

» ‘“affine” operations:
> 0;

>
> for A\ € R, the scalar multiplication by A, i.e. R - R, x — A\ - x;

> 1;

» the truncated countable supremum

(v, X1, X2, ... ) — sfflo;f{min{y,x,,}}.
n—=
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Question 3:

axiomatization?
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Recall: a function R® — R preserves integrability over finite measure
spaces if and only if it is measurable and subaffine.

Theorem (A., 2020)

The variety generated by the clone of measurable subaffine functions on
R is the class of Dedekind o-complete vector lattice with a weak unit.

Vector lattice (a.k.a. Riesz space) := vector space + lattice order +
compatibility conditions.

Dedekind o-complete := every countable subset with an upper bound has
a supremum. (Equivalently, for vector lattices: every countable subset
with a lower bound has an infimum.)

Weak unit := element 1 > 0 such that x A1 =0 implies x = 0.
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The structure of a Dedekind o-complete vector lattice with a weak unit is
the richest algebraic structure shared by all £1(x) with p finite (and that
uses only pointwise applications of functions R* — R).
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Recall: a function R® — R preserves integrability if and only if it is
measurable and sublinear.

Theorem (A., 2020)

The variety generated by the clone of measurable sublinear functions on
R is the class of Dedekind o-complete truncated vector lattices.

Truncated [Ball, 2014] := ... = with a unary endofunction behaving like
a meet with a weak unit a — a A 1.
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The structure of a Dedekind o-complete truncated vector lattice is the
richest algebraic structure shared by all £1(x)'s (and that uses only
pointwise applications of functions R* — R).
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Theorem (A., 2020)

Dedekind o-complete vector lattice with a weak unit form a variety of
algebras, generated by R.

{Ded. o-compl. vect. latt. w. weak unit} = HSP(R)
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Theorem (A., 2020)

Dedekind o-complete vector lattice with a weak unit form a variety of
algebras, generated by R.

{Ded. o-compl. vect. latt. w. weak unit} = HSP(R) = ISP, educed (R)-

In fact, every Dedekind o-complete vector lattice with a weak unit is a
subalgebra of a power of R modulo a o-ideal.

(~ Loomis-Sikorski theorem.)

Analogous results hold for Dedeking o-complete truncated vector lattices.
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Theorem (A., 2021)

The free Dedekind o-complete vector lattice with a weak unit over a set
I (exists, and) is

{measurable and subaffine R — R}.

Theorem (A., 2021)

The free Dedekind o-complete truncated vector lattice over a set |
(exists, and) is

{ measurable and sublinear R — R}.
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To sum up
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L(pn)'s: Dedekind o-complete truncated vector lattice.
Finite £!(u)'s: Dedekind o-complete vector lattice with a weak unit.

Free Dedekind o-complete truncated vector lattice over /:

{measurable and sublinear R — R}.

Free Dedekind o-complete vector lattice with a weak unit over /:

{measurable and subaffine R/ — R}.
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L(pn)'s: Dedekind o-complete truncated vector lattice.
Finite £!(u)'s: Dedekind o-complete vector lattice with a weak unit.

Free Dedekind o-complete truncated vector lattice over /:

{measurable and sublinear R — R}.

Free Dedekind o-complete vector lattice with a weak unit over /:

{measurable and subaffine R/ — R}.

Thank you!

[ Marco Abbadini.

Operations that preserve integrability, and truncated Riesz spaces.
Forum Mathematicum, 2020.
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