The algebraic structure of spaces of integrable functions

Marco Abbadini

School of Computer Science, University of Birmingham, UK

107th Workshop on General Algebra – AAA 107 Bern, Switzerland 21 June 2025

Based on:

Marco Abbadini.

Operations that preserve integrability, and truncated Riesz spaces. Forum Mathematicum, 2020.

Algebraic approach to measure theory.

T. Kroupa, V. Marra. The two-sorted algebraic theory of states, and the universal states of MV-algebras. *Journal of Pure and Applied Algebra*, 2021.

Measure space:

$$(\underbrace{\Omega}_{\text{set}}, \underbrace{\mathcal{F}}_{\sigma\text{-algebra}}, \underbrace{\mu \colon \mathcal{F} \to [0, \infty]}_{\text{measure}})$$

E.g.:

(\mathbb{R} , {Lebesgue measurable sets}, Lebesgue measure)

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A function $f : \Omega \to \mathbb{R}$ is called *integrable* if it is \mathcal{F} -measurable and $\int_{\Omega} |f| d\mu < \infty$.

 $\mathcal{L}^{1}(\mu) \coloneqq \{f \colon \Omega \to \mathbb{R} \mid f \text{ is integrable}\}.$

T. Kroupa, V. Marra. The two-sorted algebraic theory of states, and the universal states of MV-algebras. *Journal of Pure and Applied Algebra*, 2021.

Idea: to see an integral

$$\int \colon \mathcal{L}^1(\mu) o \mathbb{R}$$

as a two-sorted algebra, with

- $\mathcal{L}^1(\mu)$ the content of one sort (and an algebra of its own),
- \blacktriangleright \mathbb{R} the content of the other sort (and an algebra of its own),
- ► ∫ the interpretation of a unary function symbol between the two sorts.

What algebraic structure does $\mathcal{L}^1(\mu)$ have?

E.g.: it has at least a vector space structure, obtained via pointwise application of the vector space structure of \mathbb{R} .

What is the algebraic structure common to all $\mathcal{L}^{1}(\mu)$'s?

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. $f, g \colon \Omega \to \mathbb{R}$ integrable functions. Then

• f + g is integrable,

• $f \cdot g$ may be non-integrable. (E.g.: $\Omega = (0,1)$, $f(x) = g(x) = \frac{1}{x^{0.9}}$.)

The addition $+: \mathbb{R}^2 \to \mathbb{R}$, applied pointwise, *preserves integrability*. Not the multiplication $\cdot: \mathbb{R}^2 \to \mathbb{R}$.

Preserving integrability := returning integrable functions when applied to integrable functions.

Definition

A function $\tau : \mathbb{R}^{\kappa} \to \mathbb{R}$ (with κ a cardinal) preserves integrability if for every measure space $(\Omega, \mathcal{F}, \mu)$ and all $(f_i \in \mathcal{L}^1(\mu))_{i \in \kappa}$ we have $\tau((f_i)_{i \in \kappa}) \in \mathcal{L}^1(\mu)$.

Question 1

Clone on $\mathbb R$ of functions $\mathbb R^\kappa o \mathbb R$ that preserve integrability?

Question 2

Simple set of generators?

Question 3

Axiomatization of the variety generated by \mathbb{R} ?

For every measure space $(\Omega, \mathcal{F}, \mu)$, $\mathcal{L}^1(\mu)$ belongs to this variety.

Question 1: which functions $\mathbb{R}^{\kappa} \to \mathbb{R}$ preserve integrability?

Theorem (A., 2020)

For every $n \in \mathbb{N}$, a function $\tau : \mathbb{R}^n \to \mathbb{R}$ preserves integrability if and only if it is Borel measurable and sublinear.

Borel measurable := the preimage of a Borel measurable set is Borel measurable.

Sublinear := there are positive real numbers $\lambda_1, \ldots, \lambda_n$ such that, for every $\mathbf{x} \in \mathbb{R}^n$,

$$| au(\mathbf{x})| \leq \sum_{i=1}^n \lambda_i |x_i|.$$

i.e., τ ...

- is at most linear in a neighbourhood of ∞ ;
- is at most linear in a neighbourhood of 0;
- is bounded on bounded sets.

All linear operations are Borel measurable and sublinear, and hence preserve integrability:

- The addition $+: \mathbb{R}^2 \to \mathbb{R};$
- ▶ For every $\lambda \in \mathbb{R}$, the scalar multiplication $\lambda \cdot -: \mathbb{R} \to \mathbb{R}$ by λ ;

• The constant
$$0: \mathbb{R}^0 \to \mathbb{R}$$
.

I.e.: every $\mathcal{L}^1(\mu)$ is a vector space: all linear operations are well-defined (via pointwise application).

The square function $(-)^2 \colon \mathbb{R}^2 \to \mathbb{R}$ is Borel measurable but not sublinear (at infinity it grows more than linearly).

\downarrow

The square function does not preserve integrability, i.e.,

```
f integrable \neq f^2 integrable.
```

Counterexample: take a big f on a small measure space.

The square root function $\sqrt{|-|} \colon \mathbb{R} \to \mathbb{R}$ is Borel measurable but not sublinear, because no linear function bounds it close to zero.

Ļ

The square root function does not preserve integrability, i.e.,

f integrable $\neq \sqrt{|f|}$ integrable.

Counterexample: Take a small f on a big measure space.

max, min: $\mathbb{R}^2 \to \mathbb{R}$ are Borel measurable and sublinear:

$$|\max\{x, y\}| \le |x| + |y|.$$

 \downarrow

max and min preserve integrability, i.e.,

f, g integrable $\Rightarrow \sup\{f, g\}, \inf\{f, g\}$ integrable.

Essentially: every $\mathcal{L}^1(\mu)$ has a lattice structure induced by \mathbb{R} .

The constant 1: $\mathbb{R}^0 \to \mathbb{R}$ is Borel measurable but not sublinear (at $\boldsymbol{0}$ it is not 0.)

 \downarrow

1 does not preserve integrability. E.g.: the constant function 1 on $\mathbb R$ is not integrable.

For arbitrary arity:

Theorem (A., 2020)

For every cardinal κ , a function $\tau \colon \mathbb{R}^{\kappa} \to \mathbb{R}$ preserves integrability if and only if τ is cylinder measurable and sublinear.

Cylinder (or product) σ -algebra on $\mathbb{R}^{\kappa} \coloneqq$ the smallest σ -algebra that makes all projections measurable = the σ -algebra generated by the sets

$$\prod_{i \in \kappa} \begin{cases} A & \text{if } i = i_0; \\ \mathbb{R} & \text{if } i \neq i_0; \end{cases}$$

for $i_0 \in \kappa$ and $A \subseteq \mathbb{R}$ Borel.

For κ finite or countable, cylinder σ -algebra on \mathbb{R}^{κ} = Borel σ -algebra on \mathbb{R}^{κ} .

Sublinear := there are distinct $i_1, \ldots i_k \in \kappa$ s.t., for every $\mathbf{x} \in \mathbb{R}^{\kappa}$,

$$| au(\mathbf{x})| \leq \sum_{j=1}^k \lambda_i |x_{i_j}|.$$

While the countable supremum is not well-defined on \mathbb{R} , the truncated countable supremum

$$(y, x_1, x_2, \dots) \mapsto \sup_{i=1}^{\infty} \min\{y, x_i\}$$

is well-defined. It is cylinder (= Borel) measurable and sublinear:

$$|\sup_{i=1}^{\infty} \min\{y, x_i\}| \le |y| + |x_1|.$$

 \downarrow

It preserves integrability, i.e.:

 g, f_1, f_2, \ldots integrable $\Rightarrow \sup_{i=1}^{\infty} \inf\{g, f_i\}$ integrable.

Definition

A function $\tau \colon \mathbb{R}^{\kappa} \to \mathbb{R}$ (with κ a cardinal) preserves integrability over finite measure spaces if for every measure space $(\Omega, \mathcal{F}, \mu)$ with $\mu(\Omega) < \infty$ and all $(f_i \in \mathcal{L}^1(\mu))_{i \in \kappa}$ we have $\tau((f_i)_{i \in \kappa}) \in \mathcal{L}^1(\mu)$.

Theorem (A., 2020)

For every cardinal κ , a function $\tau : \mathbb{R}^{\kappa} \to \mathbb{R}$ preserves integrability over finite measure spaces if and only if it is cylinder measurable and subaffine.

Subaffine := there are positive real numbers $k, \lambda_1, \ldots, \lambda_n$ such that, for every $\mathbf{x} \in \mathbb{R}^n$,

$$|\tau(\mathbf{x})| \leq k + \sum_{i=1}^n \lambda_i |x_i|.$$

i.e., τ ...

- ▶ is at most linear in a neighbourhood of ∞;
- is at most linear in a neighbourhood of 0;
- is bounded on bounded sets.

The function $\sqrt{|-|} \colon \mathbb{R} \to \mathbb{R}$ is measurable, (not sublinear, but) subaffine. Hence, it preserves integrability over finite measure spaces.

The constant function $1\colon \mathbb{R}^0 \to \mathbb{R}$ preserves integrability over finite measure spaces.

Question 2: set of generators?

Theorem (A., 2020)

The infinitary clone on \mathbb{R} of functions that preserve integrability (= measurable + sublinear) is generated by

- "linear" operations:
 - ► 0;
 - ▶ +;

• for $\lambda \in \mathbb{R}$, the scalar multiplication by λ , i.e. $\mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda \cdot x$;

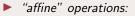
• the truncation by 1, i.e. $\mathbb{R} \to \mathbb{R}$, $x \mapsto x \land 1$;

the truncated countable supremum

$$(y, x_1, x_2, \dots) \mapsto \sup_{n=1}^{\infty} \{\min\{y, x_n\}\}.$$

Theorem (A., 2020)

The infinitary clone on \mathbb{R} of functions that preserve integrability over finite measure spaces (= measurable + subaffine) is generated by



- ► 0;
- ▶ +;
- for $\lambda \in \mathbb{R}$, the scalar multiplication by λ , i.e. $\mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda \cdot x$;

► 1;

the truncated countable supremum

$$(y, x_1, x_2, \dots) \mapsto \sup_{n=1}^{\infty} \{\min\{y, x_n\}\}.$$

Question 3: axiomatization?

Recall: a function $\mathbb{R}^{\kappa} \to \mathbb{R}$ preserves integrability over *finite* measure spaces if and only if it is measurable and subaffine.

Theorem (A., 2020)

The variety generated by the clone of measurable subaffine functions on \mathbb{R} is the class of Dedekind σ -complete vector lattice with a weak unit.

Vector lattice (a.k.a. *Riesz space*) := vector space + lattice order + compatibility conditions.

Dedekind σ -complete := every countable subset with an upper bound has a supremum. (Equivalently, for vector lattices: every countable subset with a lower bound has an infimum.)

Weak unit := element $1 \ge 0$ such that $x \land 1 = 0$ implies x = 0.

The structure of a Dedekind σ -complete vector lattice with a weak unit is the richest algebraic structure shared by all $\mathcal{L}^1(\mu)$ with μ finite (and that uses only pointwise applications of functions $\mathbb{R}^{\kappa} \to \mathbb{R}$). Recall: a function $\mathbb{R}^{\kappa} \to \mathbb{R}$ preserves integrability if and only if it is measurable and sublinear.

Theorem (A., 2020)

The variety generated by the clone of measurable sublinear functions on \mathbb{R} is the class of Dedekind σ -complete truncated vector lattices.

Truncated [Ball, 2014] := ... = with a unary endofunction behaving like a meet with a weak unit $a \mapsto a \land 1$.

The structure of a Dedekind σ -complete truncated vector lattice is the richest algebraic structure shared by all $\mathcal{L}^1(\mu)$'s (and that uses only pointwise applications of functions $\mathbb{R}^{\kappa} \to \mathbb{R}$).

Theorem (A., 2020)

Dedekind σ -complete vector lattice with a weak unit form a variety of algebras, generated by \mathbb{R} .

{Ded. σ -compl. vect. latt. w. weak unit} = $\mathbb{HSP}(\mathbb{R})$

Theorem (A., 2020)

Dedekind σ -complete vector lattice with a weak unit form a variety of algebras, generated by \mathbb{R} .

{Ded. σ -compl. vect. latt. w. weak unit} = $\mathbb{HSP}(\mathbb{R}) = \mathbb{ISP}_{\sigma\text{-reduced}}(\mathbb{R})$.

In fact, every Dedekind σ -complete vector lattice with a weak unit is a subalgebra of a power of $\mathbb R$ modulo a σ -ideal.

(\approx Loomis-Sikorski theorem.)

Analogous results hold for Dedeking σ -complete truncated vector lattices.

Theorem (A., 2021)

The free Dedekind σ -complete vector lattice with a weak unit over a set I (exists, and) is

{measurable and subaffine $\mathbb{R}^{l} \to \mathbb{R}$ }.

Theorem (A., 2021)

The free Dedekind σ -complete truncated vector lattice over a set I (exists, and) is

 $\{\text{measurable and sublinear } \mathbb{R}^{I} \to \mathbb{R}\}.$

To sum up

 $\mathcal{L}^{1}(\mu)$'s: Dedekind σ -complete truncated vector lattice. Finite $\mathcal{L}^{1}(\mu)$'s: Dedekind σ -complete vector lattice with a weak unit. Free Dedekind σ -complete truncated vector lattice over *I*:

{measurable and sublinear $\mathbb{R}^{I} \to \mathbb{R}$ }.

Free Dedekind σ -complete vector lattice with a weak unit over *I*:

 $\{\text{measurable and subaffine } \mathbb{R}^{I} \to \mathbb{R}\}.$

 $\mathcal{L}^{1}(\mu)$'s: Dedekind σ -complete truncated vector lattice. Finite $\mathcal{L}^{1}(\mu)$'s: Dedekind σ -complete vector lattice with a weak unit. Free Dedekind σ -complete truncated vector lattice over *I*:

{measurable and sublinear $\mathbb{R}^{I} \to \mathbb{R}$ }.

Free Dedekind σ -complete vector lattice with a weak unit over *I*:

 $\{$ measurable and subaffine $\mathbb{R}' \to \mathbb{R} \}.$

Thank you!

Marco Abbadini.

Operations that preserve integrability, and truncated Riesz spaces. Forum Mathematicum, 2020.