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Algebraic approach to measure theory.

T. Kroupa, V. Marra. The two-sorted algebraic theory of states, and the

universal states of MV-algebras. Journal of Pure and Applied Algebra, 2021.
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Measure space:

( Ω︸︷︷︸
set

, F︸︷︷︸
σ-algebra

, µ : F → [0,∞]︸ ︷︷ ︸
measure

)

E.g.:

(R, {Lebesgue measurable sets}, Lebesgue measure)
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Let (Ω,F , µ) be a measure space. A function f : Ω → R is called

integrable if it is F-measurable and
∫
Ω
|f | dµ < ∞.

L1(µ) := {f : Ω → R | f is integrable}.
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T. Kroupa, V. Marra. The two-sorted algebraic theory of states, and the

universal states of MV-algebras. Journal of Pure and Applied Algebra, 2021.

Idea: to see an integral ∫
: L1(µ) → R

as a two-sorted algebra, with

▶ L1(µ) the content of one sort (and an algebra of its own),

▶ R the content of the other sort (and an algebra of its own),

▶
∫
the interpretation of a unary function symbol between the two

sorts.

What algebraic structure does L1(µ) have?

E.g.: it has at least a vector space structure, obtained via pointwise

application of the vector space structure of R.

What is the algebraic structure common to all L1(µ)’s?
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Example

Let (Ω,F , µ) be a measure space. f , g : Ω → R integrable functions.

Then

▶ f + g is integrable,

▶ f · g may be non-integrable. (E.g.: Ω = (0, 1), f (x) = g(x) = 1
x0.9 .)

The addition +: R2 → R, applied pointwise, preserves integrability. Not

the multiplication · : R2 → R.

Preserving integrability := returning integrable functions when applied to

integrable functions.

Definition

A function τ : Rκ → R (with κ a cardinal) preserves integrability if for

every measure space (Ω,F , µ) and all (fi ∈ L1(µ))i∈κ we have

τ((fi )i∈κ) ∈ L1(µ).
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Question 1

Clone on R of functions Rκ → R that preserve integrability?

Question 2

Simple set of generators?

Question 3

Axiomatization of the variety generated by R?

For every measure space (Ω,F , µ), L1(µ) belongs to this variety.
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Question 1:

which functions Rκ → R preserve integrability?
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Theorem (A., 2020)

For every n ∈ N, a function τ : Rn → R preserves integrability if and only

if it is Borel measurable and sublinear.

Borel measurable := the preimage of a Borel measurable set is Borel

measurable.

Sublinear := there are positive real numbers λ1, . . . , λn such that, for

every x ∈ Rn,

|τ(x)| ≤
n∑

i=1

λi |xi |.

i.e., τ ...

▶ is at most linear in a neighbourhood of ∞;

▶ is at most linear in a neighbourhood of 0;

▶ is bounded on bounded sets.
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Example

All linear operations are Borel measurable and sublinear, and hence

preserve integrability:

▶ The addition +: R2 → R;
▶ For every λ ∈ R, the scalar multiplication λ · − : R → R by λ;

▶ The constant 0 : R0 → R.

I.e.: every L1(µ) is a vector space: all linear operations are well-defined

(via pointwise application).
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Example

The square function (−)2 : R2 → R is Borel measurable but not sublinear

(at infinity it grows more than linearly).

↓

The square function does not preserve integrability, i.e.,

f integrable ̸⇒ f 2 integrable.

Counterexample: take a big f on a small measure space.
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Example

The square root function
√
|−| : R → R is Borel measurable but not

sublinear, because no linear function bounds it close to zero.

↓

The square root function does not preserve integrability, i.e.,

f integrable ̸⇒
√
|f | integrable.

Counterexample: Take a small f on a big measure space.
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Example

max,min: R2 → R are Borel measurable and sublinear:

|max{x , y}| ≤ |x |+ |y |.

↓

max and min preserve integrability, i.e.,

f , g integrable ⇒ sup{f , g}, inf{f , g} integrable.

Essentially: every L1(µ) has a lattice structure induced by R.
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Example

The constant 1 : R0 → R is Borel measurable but not sublinear (at 0 it is

not 0.)

↓

1 does not preserve integrability. E.g.: the constant function 1 on R is

not integrable.
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For arbitrary arity:

Theorem (A., 2020)

For every cardinal κ, a function τ : Rκ → R preserves integrability if and

only if τ is cylinder measurable and sublinear.

Cylinder (or product) σ-algebra on Rκ := the smallest σ-algebra that

makes all projections measurable = the σ-algebra generated by the sets∏
i∈κ

{
A if i = i0;

R if i ̸= i0;

for i0 ∈ κ and A ⊆ R Borel.

For κ finite or countable, cylinder σ-algebra on Rκ = Borel σ-algebra on

Rκ.

Sublinear := there are distinct i1, . . . ik ∈ κ s.t., for every x ∈ Rκ,

|τ(x)| ≤
k∑

j=1

λi |xij |.
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Example

While the countable supremum is not well-defined on R, the truncated

countable supremum

(y , x1, x2, . . . ) 7→
∞
sup
i=1

min{y , xi}

is well-defined. It is cylinder (= Borel) measurable and sublinear:

| ∞
sup
i=1

min{y , xi}| ≤ |y |+ |x1|.

↓

It preserves integrability, i.e.:

g , f1, f2, . . . integrable ⇒ sup∞i=1 inf{g , fi} integrable.
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Definition

A function τ : Rκ → R (with κ a cardinal) preserves integrability over

finite measure spaces if for every measure space (Ω,F , µ) with

µ(Ω) < ∞ and all (fi ∈ L1(µ))i∈κ we have τ((fi )i∈κ) ∈ L1(µ).
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Theorem (A., 2020)

For every cardinal κ, a function τ : Rκ → R preserves integrability over

finite measure spaces if and only if it is cylinder measurable and subaffine.

Subaffine := there are positive real numbers k , λ1, . . . , λn such that, for

every x ∈ Rn,

|τ(x)| ≤ k +
n∑

i=1

λi |xi |.

i.e., τ ...

▶ is at most linear in a neighbourhood of ∞;

▶ is at most linear in a neighbourhood of 0;

▶ is bounded on bounded sets.
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The function
√
|−| : R → R is measurable, (not sublinear, but) subaffine.

Hence, it preserves integrability over finite measure spaces.

The constant function 1: R0 → R preserves integrability over finite

measure spaces.
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Question 2:

set of generators?
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Theorem (A., 2020)

The infinitary clone on R of functions that preserve integrability (=

measurable + sublinear) is generated by

▶ “linear” operations:

▶ 0;
▶ +;
▶ for λ ∈ R, the scalar multiplication by λ, i.e. R → R, x 7→ λ · x ;

▶ the truncation by 1, i.e. R → R, x 7−→ x ∧ 1;

▶ the truncated countable supremum

(y , x1, x2, . . . ) 7→
∞
sup
n=1

{min{y , xn}}.
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Theorem (A., 2020)

The infinitary clone on R of functions that preserve integrability over

finite measure spaces (= measurable + subaffine) is generated by

▶ “affine” operations:

▶ 0;
▶ +;
▶ for λ ∈ R, the scalar multiplication by λ, i.e. R → R, x 7→ λ · x ;
▶ 1;

▶ the truncated countable supremum

(y , x1, x2, . . . ) 7→
∞
sup
n=1

{min{y , xn}}.
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Question 3:

axiomatization?
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Recall: a function Rκ → R preserves integrability over finite measure

spaces if and only if it is measurable and subaffine.

Theorem (A., 2020)

The variety generated by the clone of measurable subaffine functions on

R is the class of Dedekind σ-complete vector lattice with a weak unit.

Vector lattice (a.k.a. Riesz space) := vector space + lattice order +

compatibility conditions.

Dedekind σ-complete := every countable subset with an upper bound has

a supremum. (Equivalently, for vector lattices: every countable subset

with a lower bound has an infimum.)

Weak unit := element 1 ≥ 0 such that x ∧ 1 = 0 implies x = 0.
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The structure of a Dedekind σ-complete vector lattice with a weak unit is

the richest algebraic structure shared by all L1(µ) with µ finite (and that

uses only pointwise applications of functions Rκ → R).
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Recall: a function Rκ → R preserves integrability if and only if it is

measurable and sublinear.

Theorem (A., 2020)

The variety generated by the clone of measurable sublinear functions on

R is the class of Dedekind σ-complete truncated vector lattices.

Truncated [Ball, 2014] := ... = with a unary endofunction behaving like

a meet with a weak unit a 7→ a ∧ 1.
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The structure of a Dedekind σ-complete truncated vector lattice is the

richest algebraic structure shared by all L1(µ)’s (and that uses only

pointwise applications of functions Rκ → R).
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Theorem (A., 2020)

Dedekind σ-complete vector lattice with a weak unit form a variety of

algebras, generated by R.

{Ded. σ-compl. vect. latt. w. weak unit} = HSP(R)

= ISPσ-reduced(R).

In fact, every Dedekind σ-complete vector lattice with a weak unit is a

subalgebra of a power of R modulo a σ-ideal.

(≈ Loomis-Sikorski theorem.)

Analogous results hold for Dedeking σ-complete truncated vector lattices.
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Theorem (A., 2021)

The free Dedekind σ-complete vector lattice with a weak unit over a set

I (exists, and) is {
measurable and subaffine RI → R

}
.

Theorem (A., 2021)

The free Dedekind σ-complete truncated vector lattice over a set I

(exists, and) is {
measurable and sublinear RI → R

}
.
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To sum up
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L1(µ)’s: Dedekind σ-complete truncated vector lattice.

Finite L1(µ)’s: Dedekind σ-complete vector lattice with a weak unit.

Free Dedekind σ-complete truncated vector lattice over I :{
measurable and sublinear RI → R

}
.

Free Dedekind σ-complete vector lattice with a weak unit over I :{
measurable and subaffine RI → R

}
.

Thank you!

Marco Abbadini.

Operations that preserve integrability, and truncated Riesz spaces.

Forum Mathematicum, 2020.
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