The unification type of Łukasiewicz logic with a bounded number of variables

Marco Abbadini

School of Computer Science, University of Birmingham, UK

ToLo Tbilisi, Georgia 25 June 2025

Based on:

Marco Abbadini, Luca Spada. Łukasiewicz unification with finitely many variables. *arXiv:2504.19011*. Let *E* be a set of equations in a functional signature (in our case, E = the set of equations defining MV-algebras).

An *E*-unification problem is a pair (X, S) where X is a finite subset of Var and $S = \{s_1 \approx t_1, \ldots, s_k \approx t_k\}$ is a finite set of equations with variables in X.

Example

$$x \lor y \lor \neg x \lor \neg y \approx 1. \tag{B}$$

An *E*-unifier for (X, S) (with variables in a finite subset Y of Var) is a substitution $\sigma: X \to \text{Terms}(Y)$ such that, for all $i \in \{1, ..., k\}$,

$$s_i[\sigma(x)/x, x \in X] \approx_E t_i[\sigma(x)/x, x \in X]$$

Example

A unifier for

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

with variables in $\{y\}$ is

$$x\mapsto 1, y\mapsto y,$$

because

$$1 \lor y \lor \neg 1 \lor \neg y \approx 1.$$

Example

 $1\approx 0$ has no unifier.

Example

 $x \approx \neg x$ has no unifier.

Composing an *E*-unifier σ with a substitution gives still an *E*-unifier, which is "less general" than σ .

Example

Composing the unifier $x \mapsto 1$, $y \mapsto y$ of

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

with the substitution $y \mapsto y \oplus y$ gives a unifier (with variables in $\{z\}$)

 $x \mapsto 1, \ y \mapsto y \oplus y$

because

$$1 \lor (y \oplus y) \lor \neg 1 \lor \neg (y \oplus y) \approx 1. \tag{(B)}$$

A unifier $\sigma: X \to \text{Terms}(Y)$ is more general than $\sigma': X \to \text{Terms}(Y')$ (with respect to E) if there is a substitution $\theta: Y \to \text{Terms}(Y')$ such that, for all $x \in X$,

$$\sigma'(x) \approx_E (\sigma(x))[\theta(y)/y, y \in Y].$$

This relation defines a preorder on the set of unifiers.

Example

Is there a unifier for

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

that is strictly more general than

$$x \mapsto 1, \ y \mapsto y \tag{U1}$$

?

Example

Is there a unifier for

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

that is strictly more general than

$$x \mapsto 1, \ y \mapsto y$$
 (U1)

? Yes, for example, with variables in $\{x, y\}$:

$$x \mapsto x \oplus y, \ y \mapsto x \odot y. \tag{U2}$$

It is a unifier:

$$(x \oplus y) \lor (x \odot y) \lor \neg (x \oplus y) \lor \neg (x \odot y) \approx 1.$$

(U2) is more general than (U1): $(x \mapsto 1, y \mapsto y) \circ (U2) = (U1)$. Not vice versa.

Marco Abbadini

If a unification problem has a unifier, four situations may arise.

The unification type of E is the worst unification type occurring among unifiable unification problems.

The unification type of Łukasiewicz logic is the worst: **nullary** [Marra, Spada, 2013]. The problem

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

has nullary unification type.

Marra and Spada exhibited a chain (ordered as ω) of unifiers of strictly increasing generality such that every unifier of (\mathfrak{B}) is below some element in the chain.

They proved it via duality.

The unifiers in the chain are in a strictly increasing number of variables.

(Marra, Spada, 2013) Does the unification type of

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

and in general of Łukasiewicz logic improves by restricting to a finite number the number of available variables?

The unification type of Łukasiewicz logic restricted to 0 variables is unary.

Theorem (Marra, Spada, 2013)

The unification type of Łukasiewicz logic restricted to 1 variable is finitary.

Conjecture (Marra, Spada, 2013)

For all $n \ge 2$, the unification type of Łukasiewicz logic restricted to n variables is nullary.

The unification type of Łukasiewicz logic restricted to 0 variables is unary.

Theorem (Marra, Spada, 2013)

The unification type of Łukasiewicz logic restricted to 1 variable is finitary.

Conjecture (Marra, Spada, 2013)

For all $n \ge 2$, the unification type of Łukasiewicz logic restricted to n variables is nullary.

Theorem (A., Spada)

Correct.

The unification type of Łukasiewicz logic restricted to 0 variables is unary.

Theorem (Marra, Spada, 2013)

The unification type of Łukasiewicz logic restricted to 1 variable is finitary.

Conjecture (Marra, Spada, 2013)

For all $n \ge 2$, the unification type of Łukasiewicz logic restricted to n variables is nullary.

Theorem (A., Spada)

Correct.

Reason: the problem

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

is still NUTs (of nullary unification types).

Marco Abbadini

Theorem (A., Spada)

For every $n \ge 2$, the preordered set of unifiers for

$$x \lor y \lor \neg x \lor \neg y \approx 1 \tag{B}$$

with at most n variables has nullary unification type.

We prove that every unifier in at most n variables more general than

$$x \mapsto 1, y \mapsto y$$

is strictly less general than some unifier in at most n variables. The proof is via duality. The variables in the problem and the variables in the solution are pretty much unrelated.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

variables for the solution

Marra & Spada, 2013.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

lem		0	1	2	3	4	5	
ariables for the prob	0	unary						
	1		finitary					
	2			nullary				
	3				nullary			
	4					nullary		
	5						nullary	
-								

variables for the solution

Marra & Spada, 2013.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

ariables for the problem		0	1	2	3	4	5	
	0	unary	unary	unary	unary	unary	unary	
	1	finitary	finitary					
	2	finitary		nullary				
	3	finitary			nullary			
	4	finitary				nullary		
	5	finitary					nullary	
-								

variables for the solution

Marra & Spada, 2013.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

ariables for the problem		0	1	2	3	4	5	
	0	unary	unary	unary	unary	unary	unary	
	1	finitary	finitary	finitary	finitary	finitary	finitary	
	2	finitary		nullary				
	3	finitary			nullary			
	4	finitary				nullary		
	5	finitary					nullary	
-								

variables for the solution

Marra & Spada, 2013.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

ariables for the problem		0	1	2	3	4	5	
	0	unary	unary	unary	unary	unary	unary	
	1	finitary	finitary	finitary	finitary	finitary	finitary	
	2	finitary		nullary	nullary	nullary	nullary	
	3	finitary		nullary	nullary	nullary	nullary	
	4	finitary		nullary	nullary	nullary	nullary	
	5	finitary		nullary	nullary	nullary	nullary	
-								

variables for the solution

Marra & Spada, 2013.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

ariables for the problem		0	1	2	3	4	5	
	0	unary	unary	unary	unary	unary	unary	
	1	finitary	finitary	finitary	finitary	finitary	finitary	
	2	finitary	(open)	nullary	nullary	nullary	nullary	
	3	finitary	(open)	nullary	nullary	nullary	nullary	
	4	finitary	(open)	nullary	nullary	nullary	nullary	
	5	finitary	(open)	nullary	nullary	nullary	nullary	
>								

variables for the solution

Marra & Spada, 2013.

Theorem (See Marra, Spada, 2013)

The following categories are dually equivalent.

- 1. The category of finitely presented MV-algebras and homomorphisms between them.
- 2. The category of rational polyhedra (i.e., finite unions of polytopes with rational vertices) and ℤ-maps (≔ piecewise linear maps with integer coefficients) between them.

Free MV-algebra on $n \in \mathbb{N}$ generators

↓ [0,1]ⁿ. (The dual of) a *unification problem* consists of a natural number $m \in \mathbb{N}$ and a rational polyhedron $P \subseteq [0, 1]^m$.

The dual of

$$x \lor y \lor \neg x \lor \neg y \approx 1. \tag{\mathfrak{B}}$$

is the border of the square

(The dual of) a unifier for P (with n variables) is a \mathbb{Z} -map $[0,1]^n \to P$.

A unifier $f': [0,1]^{n'} \to P$ is more general than a unifier $f: [0,1]^n \to P$ if there is a \mathbb{Z} -map $h: [0,1]^n \to [0,1]^{n'}$ such that the following diagram commutes.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

ariables for the problem		0	1	2	3	4	5	
	0	unary	unary	unary	unary	unary	unary	
	1	finitary	finitary	finitary	finitary	finitary	finitary	
	2	finitary	(open)	nullary	nullary	nullary	nullary	
	3	finitary	(open)	nullary	nullary	nullary	nullary	
	4	finitary	(open)	nullary	nullary	nullary	nullary	
	5	finitary	(open)	nullary	nullary	nullary	nullary	
-								

variables for the solution

Marra & Spada, 2013.

What is the unification type of Łukasiewicz logic restricted to $m \in \mathbb{N}$ variables for the problem and $n \in \mathbb{N}$ variables for the solution?

ariables for the problem		0	1	2	3	4	5	
	0	unary	unary	unary	unary	unary	unary	
	1	finitary	finitary	finitary	finitary	finitary	finitary	
	2	finitary	(open)	nullary	nullary	nullary	nullary	
	3	finitary	(open)	nullary	nullary	nullary	nullary	
	4	finitary	(open)	nullary	nullary	nullary	nullary	
	5	finitary	(open)	nullary	nullary	nullary	nullary	
-								

variables for the solution

Marra & Spada, 2013.

A. & Spada.

Thank you