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Based on a joint work with Francesca Guffanti:

ﬁ Freely adding one layer of quantifiers to a Boolean doctrine. arXiv.
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https://arxiv.org/abs/2410.16328

Universal theory: universal closures of quantifier-free formulas.
E.g.: theory of partial orders.

1. (Reflexivity) Vx (x < x),

2. (Transitivity) VxVy (x <y < z) = x < z)

3. (Anti-symmetry) VxVy ((x < y)A(y < x) = x=1y)

Also, the theory of partial orders with min and max (as constants).

4. ¥x (min < x),
5. ¥x (x < max).

Herbrand's theorem for 3-statements, 1930

Let T be a universal theory in a language with at least a constant
symbol. For x € Var and a(x) quantifier-free, T proves Ix a(x) if and
only if there are term-definable constants (i.e., ground terms) cy, ..., c,
such that T proves afa/x] V -+ V a[¢n/x].
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Examples:

> (<) The theory T of partial orders with min and max proves
Ix (max < x)

because T proves
max < max.

» (=) The theory T of partial orders with min and max does not prove
Ix (min < x < max)
because 7 does not prove any of the following two
min < min < max min < max < max,

as well as any disjunction made up of them.
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Herbrand's theorem

Let T be a universal theory in a language with at least a constant symbol. For
x € Var and a(x) quantifier-free, T proves 3x a(x) if and only if there are
term-definable constants c1, ..., c, such that T proves a[a/x]V -V a[/x].

The hypothesis that there is at least a constant symbol cannot be
removed: F Jx (x = x), but no witnessing constants.

However, the hypothesis can be removed if we either

1. replace “term-definable constants” by “terms” (so that also
variables can be used),

2. use a version of classical first-order logic whose semantics admits
empty structures.
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Boolean algebras : Classical propositional logic

First-order Boolean doctrines [Lawvere, '60s] : Classical first-order logic.
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Fix a functional language F.

Roughly speaking: first-order Boolean doctrines over F are the algebras

of the form
(F,R)-Formulas/=1

for R ranging among all sets of relation symbols, and 7 among all
theories in the first-order language (F,R).

Usually, first-order Boolean doctrines are defined as certain functors
C°P — BoolAlg, with C taking the place of F.

We avoid this categorical phrasing in this talk.
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A first-order Boolean doctrine over a functional language F consists of

1. a family of Boolean algebras (P(X))xc,. var (here, P(X) models
the set of equivalence classes of formulas with free variables in X),

2. substitutions: for X, Y Cg,, Var and for a map o: X — Term(Y),
we have a Boolean homomorphism P, : P(X) — P(Y'), modelling
o af(70 /) xex],

3. quantifiers: for X Cg, Var, y € Var \ X two maps
3,¥: P(XU{y}) = P(X), modelling a — Jy @ and o — Vy «,

satisfying certain axioms (functoriality of substitutions, quantifiers are
adjoint to adding dummy variables, quantifiers commute with
substitutions).

We avoid equality, for simplicity.
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First-order Boolean doctrines are the algebras of classical first-order logic.

Disclaimer: the “classical first-order logic” meant here is the one whose
semantics allows the usage of empty structures.

If empty structures are undesired, one can restrict to the first-order
Boolean doctrines satisfying "IxT = T".
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The algebras of quantifier-free formulas modulo a universal theory ~~
Boolean doctrines.

These are defined as first-order Boolean doctrines, but without
quantifiers: a family of Boolean algebras, linked by substitutions
(Boolean homomorphisms), satisfying functoriality.
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First-order Boolean algebras over a fixed functional language F form a
class of many-sorted algebras (one sort for each finite set of variables)
definable by equations (i.e. a variety of algebras).

Varieties of algebras admit all free algebras. The forgetful functor from
the category of first-order Boolean doctrines over F to the category of
Boolean doctrines over F has a left adjoint: it maps a Boolean
doctrine P to a first-order Boolean doctrine P2, called the quantifier
completion of P, which “freely adds all quantifiers” to P .

We have injections for each X Cg, Var
P(X) — P¥(X).

Roughly speaking: the set of quantifier-free formulas with variables in X
is a subset of the set of first-order formulas with variables in X.
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Herbrand's theorem

Let T be a universal theory in a language with at least a constant symbol. For
x € Var and o(x) quantifier-free, T proves Ix ax) if and only if there are
term-definable constants ci, . .., c, such that T proves a[c /<] \V/ -\ o[ /x].

Algebraic version:
Theorem (A., Guffanti)

Let P be a Boolean doctrine over a functional signature. For x € Var
and a € P({x}),
Ixa=T inP7(2)

if and only if there are term-definable constants ci, ..., c, such that

afa/x]V---Vala/xl=T inP(2).

No need for the existence of constants in F. (Since & is allowed.)
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Herbrand's theorem

Let T be a universal theory in a language with at least a constant symbol. For
x € Var and o(x) quantifier-free, T proves Ix o(x) if and only if there are
term-definable constants ci, ..., c, such that T proves o[ /<] \V/ -\ o[ /x].

Algebraic version:
Theorem (A., Guffanti)

Let P be a Boolean doctrine over a functional signature. For x € Var
and a € P({x}),
Ixa=T inP™(2)

if and only if there are term-definable constants cy, ..., c, such that

ala/x]V---Va[a/x] =T inP(2).

T cannot be an arbitrary theory ~ we need freeness of P" over P.
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We actually proved it in the setting of first-order Boolean doctrines as
certain functors C°P — BA.

In this way, we cover also many-sorted classical first-order logic.

The proof uses models. To produce them, we use a proof similar to
Henkin's proof of Godel's completeness theorem (using the axiom of
choice).

@ Freely adding one layer of quantifiers to a Boolean doctrine. arXiv.

Thank you!
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