An algebraic version of Herbrand's theorem

Marco Abbadini

School of Computer Science, University of Birmingham, UK

Vienna, Austria 7 July 2025

Based on a joint work with Francesca Guffanti:

Freely adding one layer of quantifiers to a Boolean doctrine. arXiv.

Universal theory: universal closures of quantifier-free formulas.

- E.g.: theory of partial orders.
 - 1. (Reflexivity) $\forall x (x \leq x)$,
 - 2. (Transitivity) $\forall x \forall y ((x \le y \le z) \rightarrow x \le z)$
 - 3. (Anti-symmetry) $\forall x \forall y ((x \le y) \land (y \le x) \rightarrow x = y)$

Also, the theory of partial orders with min and max (as constants).

- 4. $\forall x (\min \leq x)$,
- 5. $\forall x (x \leq \max)$.

Herbrand's theorem for \exists -statements, 1930

Let \mathcal{T} be a universal theory in a language with at least a constant symbol. For $x \in \text{Var}$ and $\alpha(x)$ quantifier-free, \mathcal{T} proves $\exists x \alpha(x)$ if and only if there are term-definable constants (i.e., ground terms) c_1, \ldots, c_n such that \mathcal{T} proves $\alpha[c_1/x] \vee \cdots \vee \alpha[c_n/x]$. Examples:

▶ (⇐) The theory \mathcal{T} of partial orders with min and max proves

 $\exists x (\max \leq x)$

because \mathcal{T} proves

 $\max \leq \max$.

 \blacktriangleright ($\Rightarrow) The theory <math display="inline">{\cal T}$ of partial orders with min and max does not prove

 $\exists x (\min \leq x \leq \max)$

because ${\mathcal T}$ does not prove any of the following two

 $\min \leq \min \leq \max \qquad \min \leq \max \leq \max,$

as well as any disjunction made up of them.

Herbrand's theorem

Let \mathcal{T} be a universal theory in a language with at least a constant symbol. For $x \in \text{Var}$ and $\alpha(x)$ quantifier-free, \mathcal{T} proves $\exists x \alpha(x)$ if and only if there are term-definable constants c_1, \ldots, c_n such that \mathcal{T} proves $\alpha[c_1/x] \vee \cdots \vee \alpha[c_n/x]$.

The hypothesis that there is at least a constant symbol cannot be removed: $\vdash \exists x (x = x)$, but no witnessing constants.

However, the hypothesis can be removed if we either

- 1. replace "term-definable constants" by "terms" (so that also variables can be used),
- 2. use a version of classical first-order logic whose semantics admits empty structures.

Boolean algebras : Classical propositional logic =

First-order Boolean doctrines [Lawvere, '60s] : Classical first-order logic.

Fix a functional language \mathcal{F} .

Roughly speaking: first-order Boolean doctrines over $\ensuremath{\mathcal{F}}$ are the algebras of the form

 $(\mathcal{F}, \mathcal{R})$ -Formulas $\equiv_{\mathcal{T}}$

for \mathcal{R} ranging among all sets of relation symbols, and \mathcal{T} among all theories in the first-order language $(\mathcal{F}, \mathcal{R})$.

Usually, first-order Boolean doctrines are defined as certain functors $C^{\rm op} \to \mathsf{BoolAlg},$ with C taking the place of $\mathcal{F}.$

We avoid this categorical phrasing in this talk.

A first-order Boolean doctrine over a functional language $\mathcal F$ consists of

- 1. a family of Boolean algebras $(P(X))_{X \subseteq_{\text{fin}} \text{Var}}$ (here, P(X) models the set of equivalence classes of formulas with free variables in X),
- 2. substitutions: for $X, Y \subseteq_{\text{fin}} \text{Var}$ and for a map $\sigma \colon X \to \text{Term}(Y)$, we have a Boolean homomorphism $\mathbf{P}_{\sigma} \colon \mathbf{P}(X) \to \mathbf{P}(Y)$, modelling $\alpha \mapsto \alpha [(\sigma^{(x)}/x)_{x \in X}]$,
- 3. **quantifiers**: for $X \subseteq_{\text{fin}} \text{Var}, y \in \text{Var} \setminus X$ two maps $\exists, \forall : \mathbf{P}(X \cup \{y\}) \rightarrow \mathbf{P}(X)$, modelling $\alpha \mapsto \exists y \alpha$ and $\alpha \mapsto \forall y \alpha$,

satisfying certain axioms (functoriality of substitutions, quantifiers are adjoint to adding dummy variables, quantifiers commute with substitutions).

We avoid equality, for simplicity.

First-order Boolean doctrines are the algebras of classical first-order logic. Disclaimer: the "classical first-order logic" meant here is the one whose semantics allows the usage of empty structures.

If empty structures are undesired, one can restrict to the first-order Boolean doctrines satisfying " $\exists x \top = \top$ ".

The algebras of quantifier-free formulas modulo a universal theory \rightsquigarrow Boolean doctrines.

These are defined as **first-order Boolean doctrines**, but without quantifiers: a family of Boolean algebras, linked by substitutions (Boolean homomorphisms), satisfying functoriality.

First-order Boolean algebras over a fixed functional language \mathcal{F} form a class of many-sorted algebras (one sort for each finite set of variables) definable by equations (i.e. a *variety of algebras*).

Varieties of algebras admit all free algebras. The forgetful functor from the category of **first-order Boolean doctrines** over \mathcal{F} to the category of **Boolean doctrines** over \mathcal{F} has a left adjoint: it maps a Boolean doctrine **P** to a first-order Boolean doctrine $\mathbf{P}^{\forall\exists}$, called the *quantifier completion* of **P**, which "freely adds all quantifiers" to **P**.

We have injections for each $X \subseteq_{fin} Var$

$$\mathbf{P}(X) \hookrightarrow \mathbf{P}^{\forall \exists}(X).$$

Roughly speaking: the set of quantifier-free formulas with variables in X is a subset of the set of first-order formulas with variables in X.

Herbrand's theorem

Let \mathcal{T} be a universal theory in a language with at least a constant symbol. For $x \in \text{Var}$ and $\alpha(x)$ quantifier-free, \mathcal{T} proves $\exists x \alpha(x)$ if and only if there are term-definable constants c_1, \ldots, c_n such that \mathcal{T} proves $\alpha[c_n/x] \vee \cdots \vee \alpha[c_n/x]$.

Algebraic version:

Theorem (A., Guffanti)

Let P be a Boolean doctrine over a functional signature. For $x \in Var$ and $\alpha \in P(\{x\})$,

 $\exists x \, \alpha = \top \quad in \, \mathbf{P}^{\forall \exists}(\emptyset)$

if and only if there are term-definable constants c_1, \ldots, c_n such that

 $\alpha[c_1/x] \vee \cdots \vee \alpha[c_n/x] = \top$ in $\mathbf{P}(\emptyset)$.

No need for the existence of constants in \mathcal{F} . (Since \varnothing is allowed.)

Marco Abbadini

Herbrand's theorem

Let \mathcal{T} be a universal theory in a language with at least a constant symbol. For $x \in \text{Var}$ and $\alpha(x)$ quantifier-free, \mathcal{T} proves $\exists x \alpha(x)$ if and only if there are term-definable constants c_1, \ldots, c_n such that \mathcal{T} proves $\alpha[c_n/x] \vee \cdots \vee \alpha[c_n/x]$.

Algebraic version:

Theorem (A., Guffanti)

Let P be a Boolean doctrine over a functional signature. For $x \in Var$ and $\alpha \in P(\{x\})$,

 $\exists x \, \alpha = \top \quad in \, \mathbf{P}^{\forall \exists}(\emptyset)$

if and only if there are term-definable constants c_1, \ldots, c_n such that

$$\alpha[c_1/x] \vee \cdots \vee \alpha[c_n/x] = \top \quad in \mathbf{P}(\emptyset).$$

 \mathcal{T} cannot be an arbitrary theory \rightsquigarrow we need freeness of $\mathbf{P}^{\forall\exists}$ over \mathbf{P} .

Marco Abbadini

We actually proved it in the setting of first-order Boolean doctrines as certain functors $C^{\rm op}\to BA.$

In this way, we cover also *many-sorted* classical first-order logic.

The proof uses **models**. To produce them, we use a proof similar to Henkin's proof of Gödel's completeness theorem (using the axiom of choice).

Freely adding one layer of quantifiers to a Boolean doctrine. arXiv.

Thank you!