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Based on a joint work with Francesca Guffanti:

Freely adding one layer of quantifiers to a Boolean doctrine. arXiv.
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Universal theory: universal closures of quantifier-free formulas.

E.g.: theory of partial orders.

1. (Reflexivity) ∀x (x ≤ x),

2. (Transitivity) ∀x ∀y ((x ≤ y ≤ z) → x ≤ z)

3. (Anti-symmetry) ∀x ∀y ((x ≤ y) ∧ (y ≤ x) → x = y)

Also, the theory of partial orders with min and max (as constants).

4. ∀x (min ≤ x),

5. ∀x (x ≤ max).

Herbrand’s theorem for ∃-statements, 1930

Let T be a universal theory in a language with at least a constant

symbol. For x ∈ Var and α(x) quantifier-free, T proves ∃x α(x) if and
only if there are term-definable constants (i.e., ground terms) c1, . . . , cn
such that T proves α[c1/x] ∨ · · · ∨ α[cn/x].
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Examples:

▶ (⇐) The theory T of partial orders with min and max proves

∃x (max ≤ x)

because T proves

max ≤ max.

▶ (⇒) The theory T of partial orders with min and max does not prove

∃x (min ⪇ x ⪇ max)

because T does not prove any of the following two

min ⪇ min ⪇ max min ⪇ max ⪇ max,

as well as any disjunction made up of them.
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Herbrand’s theorem

Let T be a universal theory in a language with at least a constant symbol. For

x ∈ Var and α(x) quantifier-free, T proves ∃x α(x) if and only if there are

term-definable constants c1, . . . , cn such that T proves α[c1/x] ∨ · · · ∨ α[cn/x].

The hypothesis that there is at least a constant symbol cannot be

removed: ⊢ ∃x (x = x), but no witnessing constants.

However, the hypothesis can be removed if we either

1. replace “term-definable constants” by “terms” (so that also

variables can be used),

2. use a version of classical first-order logic whose semantics admits

empty structures.
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Boolean algebras : Classical propositional logic

=

First-order Boolean doctrines [Lawvere, ’60s] : Classical first-order logic.

Marco Abbadini An algebraic version of Herbrand’s theorem 5 / 12



Fix a functional language F .

Roughly speaking: first-order Boolean doctrines over F are the algebras

of the form

(F ,R)-Formulas/≡T

for R ranging among all sets of relation symbols, and T among all

theories in the first-order language (F ,R).

Usually, first-order Boolean doctrines are defined as certain functors

Cop → BoolAlg, with C taking the place of F .

We avoid this categorical phrasing in this talk.
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A first-order Boolean doctrine over a functional language F consists of

1. a family of Boolean algebras (P(X ))X⊆finVar (here, P(X ) models

the set of equivalence classes of formulas with free variables in X ),

2. substitutions: for X ,Y ⊆fin Var and for a map σ : X → Term(Y ),

we have a Boolean homomorphism Pσ : P(X ) → P(Y ), modelling

α 7→ α
[
(σ(x)/x)x∈X

]
,

3. quantifiers: for X ⊆fin Var, y ∈ Var \ X two maps

∃,∀ : P(X ∪ {y}) → P(X ), modelling α 7→ ∃y α and α 7→ ∀y α,

satisfying certain axioms (functoriality of substitutions, quantifiers are

adjoint to adding dummy variables, quantifiers commute with

substitutions).

We avoid equality, for simplicity.
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First-order Boolean doctrines are the algebras of classical first-order logic.

Disclaimer: the “classical first-order logic” meant here is the one whose

semantics allows the usage of empty structures.

If empty structures are undesired, one can restrict to the first-order

Boolean doctrines satisfying “∃x⊤ = ⊤”.
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The algebras of quantifier-free formulas modulo a universal theory ⇝

Boolean doctrines.

These are defined as first-order Boolean doctrines, but without

quantifiers: a family of Boolean algebras, linked by substitutions

(Boolean homomorphisms), satisfying functoriality.
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First-order Boolean algebras over a fixed functional language F form a

class of many-sorted algebras (one sort for each finite set of variables)

definable by equations (i.e. a variety of algebras).

Varieties of algebras admit all free algebras. The forgetful functor from

the category of first-order Boolean doctrines over F to the category of

Boolean doctrines over F has a left adjoint: it maps a Boolean

doctrine P to a first-order Boolean doctrine P∀∃, called the quantifier

completion of P, which “freely adds all quantifiers” to P .

We have injections for each X ⊆fin Var

P(X ) ↪→ P∀∃(X ).

Roughly speaking: the set of quantifier-free formulas with variables in X

is a subset of the set of first-order formulas with variables in X .
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Herbrand’s theorem

Let T be a universal theory in a language with at least a constant symbol. For

x ∈ Var and α(x) quantifier-free, T proves ∃x α(x) if and only if there are

term-definable constants c1, . . . , cn such that T proves α[c1/x] ∨ · · · ∨ α[cn/x].

Algebraic version:

Theorem (A., Guffanti)

Let P be a Boolean doctrine over a functional signature. For x ∈ Var

and α ∈ P({x}),
∃x α = ⊤ in P∀∃(∅)

if and only if there are term-definable constants c1, . . . , cn such that

α[c1/x] ∨ · · · ∨ α[cn/x] = ⊤ in P(∅).

No need for the existence of constants in F . (Since ∅ is allowed.)
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T cannot be an arbitrary theory ⇝ we need freeness of P∀∃ over P.
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We actually proved it in the setting of first-order Boolean doctrines as

certain functors Cop → BA.

In this way, we cover also many-sorted classical first-order logic.

The proof uses models. To produce them, we use a proof similar to

Henkin’s proof of Gödel’s completeness theorem (using the axiom of

choice).

Freely adding one layer of quantifiers to a Boolean doctrine. arXiv.

Thank you!
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