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The beauty of dualities

» Dualities offer a second viewpoint on algebraic structures:
geometric / spatial, rather than symbolic.

» Classical examples:

> Stone: Boolean algebras «~ Stone spaces
> Priestley: BDL «~ Priestley spaces

» An algebra corresponds to a structured space.
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The power of dualities (beyond representation)

» Algebras in ISP(L) (the usual setting for such dualities) can already
be represented as [-valued functions (with pointwise operations).

» A duality enriches this picture:

>
>

>

it characterizes the canonical representations,
it also represents morphisms in a natural way
f:A— B &~ continuous structure-preserving map,

giving a bijective correspondence
(both on objects and morphisms).

» This leads to a two-way dictionary:
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products of algebras «~ sums of spaces (“logarithmic” compression)
coproducts of algebras «~ products of spaces (easier to describe)
congruences «~ subspaces

free algebras «~ powers of the dual of Free(1)

algebraic questions «~ geometric/topological ones
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Our starting point: positive MV-algebras

» We were interested in obtaining a duality for positive MV-algebras:

> the {P,®,V,A,0,1}-subreducts of MV-algebras,
> i.e. the quasivariety generated by [0, 1] with these operations.

» Here, the natural dualizing algebra would be [0, 1].

» Dualities of a similar flavour exist for MV-algebras:
» Cignoli-Dubuc—Mundici (2003): locally finite MV-algebras.
Dualizing algebra: [0,1] N Q,
» Cignoli-Marra (2012): weakly locally finite MV-algebras.
Dualizing algebra: [0, 1].

Marco Abbadini Natural Duality for Finitely Valued Algebras



v

[0, 1] is infinite.

The general theory of natural dualities is well developed for finite
dualizing algebras L.

There are extensions to some infinite L, but they typically rely on
equipping L with a compact Hausdorff topology and using it in
the duality.

The MV-dualities mentioned above follow a different pattern:

> no topology is used on L (even for L = [0, 1]),
> but at a price: the duality applies not to all of ISP(L), but to a
restricted class of algebras.

Goal: provide a natural-duality framework that generalizes this
MV-style phenomenon to other infinite untopologized dualizing
algebras L.
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A clue from the MV side

» In both Cignoli-Dubuc—Mundici (2003) and Cignoli-Marra (2012),
the duality works because elements of the algebras behave like
functions with finite range in L.

» Intuition: think of a € A as an L-valued function on a Stone space,
that takes only finitely many values in L.

> This suggests that the right setting for infinite L is finitely valued
L-algebras.
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A restrictive but natural class: finitely valued algebras

Finitely valued L-algebra: an algebra A s.t. there is a set X and
an embedding A — LX s.t. each f € A has finite image in L.

l.e., it has some representation with functions of finite range. (L-algebra:

an alg. in ISP(L).)

Under mild conditions (present in our duality result), this is equivalent to:
Canonically finitely valued L-algebra: an algebra A € TISP(L) s.t.,
for each a € A, the set { h(a) | h € hom(A,L) } is finite.

l.e., the canonical representation A —» Lhom(A.L) is with functions of finite

range.
Sanity checks:

» all finite powers L" and their subalgebras are finitely L-valued;

» when L is finite, “finitely valued L-algebra” = "in ISP(L)".

Marco Abbadini Natural Duality for Finitely Valued Algebras



Viewpoint via class operators

» For a dualizing algebra L, standard natural dualities work with the
whole ISP(L) = algebras built from L by isomorphisms, subalgebras
and arbitrary products.

> For an arbitrary (possibly infinite, non-topologized) L, we replace
P(L) (all powers LX) by the class of finite-range powers:

FinRng(X,L) .= {f: X — L | f[X] is finite } < LX.

Define:
P& (L) .= { FinRng(X,L) | X any set }.

» Our duality will apply to ISP(L) (= the class of finitely valued
L-algebras), not to ISP(L). (For L finite, they coincide.)
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Assumptions on the dualizing algebra L

Think of {0,1} (Bool. alg. / bdd. distr. lattice) or [0, 1] (MV-algebra).

» L has at least two distinct constant symbols.

» L has only trivial partial endomorphisms.
l.e., for any A < L, the inclusion A < L is the unique homomorphism A — L.
» L has a (k+1)-ary near-unanimity term, with k > 2.

(E.g.: L has a lattice reduct; — majority term, i.e. ternary near-unanimity term).

Remarks.

» Under these hypotheses, “finitely valued algebras” = “canonically
finitely valued algebras”. Moreover, the dual structure is purely
relational 4 topological (no function symbols).

> The (k+1)-ary near-unanimity term allows the dual space to be a
Stone space + k-ary constraints: e.g., in Priestley spaces, the order
is a set of binary constraints.
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Duality theorem (finitely valued setting)

Main result (A., P¥enosil)

Let L satisfy the assumptions on the previous slide. Then the category
ISP™(L) (finitely valued L-algebras and homomorphisms)

is dually equivalent to the category of k-ary L-Priestley spaces (and
appropriate maps).

In particular:

> if k =2 (majority), the dual structure is driven by binary local
constraints (Priestley-flavoured);
> if L is finite, P™(L) = P(L) and we recover the usual natural-duality

scope.
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k-ary L-Priestley spaces (definition)

A k-ary L-Priestley space consists of:

» a Stone space X;

> for every | C X with |/| < k, a subalgebra A; < L', thought of as
the set of admissible L-valued local functions (on I).

These data satisfy:

> Separation: for x # y € X there is f € Ay, 3 s.t. f(x) # f(y).

» Extension: for /| C X with |/| < k and f € Ay, there is a continuous
g: X — L (with L discrete) s.t., for all J C X with |J] < k,
g|_j cA;.

Comment. When k = 2 (majority), the structure is determined by binary
constraints Ay, 1, echoing the Priestley paradigm.
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Example: recovering Priestley when L = 2, k = 2

Let L=2={0,1} (with A,V,0,1), which has a majority term, so k = 2.
For a Priestley space (X, <) define, for each | C X with |/| <2,

A, = {f:1—2]|fisorder-preserving} < 2.

Then (X, (A/);) is a 2-ary 2-Priestley space:
> Separation: if x # y, then either x £ y or y £ x. In the former
case, take x +— 1 and y — 0, otherwise take x — 0 and y > 1.

> Extension: if f € A; with |/] < 2, then f extends to a continuous
g: X — 2 with g|; € A, for all |J| < 2 (this is Priestley's separation
axiom).
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From k-ary L-Priestley spaces to finitely valued algebras

The functor maps a k-ary L-Priestley space (X, (A/)cix]<«) to

{ fiX L ‘ f cont. (with L discrete), f|; € A, for all I € [X]<¥ }

It is a finitely valued L-algebra: X compact + L discrete = a continuous
X — L has finite image.

E.g., in the Priestley case, we get
{f: X — 2| f continuous and order-preserving },

i.e. the lattice of clopen upsets of (X, <).
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For the MV-algebras L = [0,1] N Q and L = [0, 1], our duality gives the
dualities of Cignoli-Dubuc—Mundici for locally finite MV-algebras, and of
Cignoli—Marra for weakly locally finite MV-algebras.

(This is after some further simplifications that make possible turning
binary constraints into unary constraints in certain cases, which we
describe in our preprint.)
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Main result (A., P¥enosil)

Let L be an algebra such that:
» L has at least two distinct constant symbols;

» L has only trivial partial endomorphisms.

l.e., for any A < L, the inclusion A < L is the unique homomorphism A — L.
» L has a (k+1)-ary near-unanimity term, with k > 2.

(E.g.: L has a lattice reduct; — majority term, i.e. ternary near-unanimity term).

Then the category
ISP™(L) (finitely valued L-algebras and homomorphisms)

is dual to the category of k-ary L-Priestley spaces.

ArXiv: Abbadini, PFenosil,

Thank you!
y Duality for finitely valued algebras
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