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The beauty of dualities

▶ Dualities offer a second viewpoint on algebraic structures:

geometric / spatial, rather than symbolic.

▶ Classical examples:

▶ Stone: Boolean algebras ↭ Stone spaces
▶ Priestley: BDL ↭ Priestley spaces

▶ An algebra corresponds to a structured space.
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The power of dualities (beyond representation)

▶ Algebras in ISP(L) (the usual setting for such dualities) can already

be represented as L-valued functions (with pointwise operations).

▶ A duality enriches this picture:

▶ it characterizes the canonical representations,
▶ it also represents morphisms in a natural way

f : A → B ↭ continuous structure-preserving map,
▶ giving a bijective correspondence

(both on objects and morphisms).

▶ This leads to a two-way dictionary:

▶ products of algebras ↭ sums of spaces (“logarithmic” compression)
▶ coproducts of algebras ↭ products of spaces (easier to describe)
▶ congruences ↭ subspaces
▶ free algebras ↭ powers of the dual of Free(1)
▶ algebraic questions ↭ geometric/topological ones
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Our starting point: positive MV-algebras

▶ We were interested in obtaining a duality for positive MV-algebras:

▶ the {⊕,⊙,∨,∧, 0, 1}-subreducts of MV-algebras,
▶ i.e. the quasivariety generated by [0, 1] with these operations.

▶ Here, the natural dualizing algebra would be [0, 1].

▶ Dualities of a similar flavour exist for MV-algebras:

▶ Cignoli–Dubuc–Mundici (2003): locally finite MV-algebras.

Dualizing algebra: [0, 1] ∩Q,
▶ Cignoli–Marra (2012): weakly locally finite MV-algebras.

Dualizing algebra: [0, 1].
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▶ [0, 1] is infinite.

▶ The general theory of natural dualities is well developed for finite

dualizing algebras L.

▶ There are extensions to some infinite L, but they typically rely on

equipping L with a compact Hausdorff topology and using it in

the duality.

▶ The MV-dualities mentioned above follow a different pattern:

▶ no topology is used on L (even for L = [0, 1]),
▶ but at a price: the duality applies not to all of ISP(L), but to a

restricted class of algebras.

▶ Goal: provide a natural-duality framework that generalizes this

MV-style phenomenon to other infinite untopologized dualizing

algebras L.
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A clue from the MV side

▶ In both Cignoli–Dubuc–Mundici (2003) and Cignoli–Marra (2012),

the duality works because elements of the algebras behave like

functions with finite range in L.

▶ Intuition: think of a ∈ A as an L-valued function on a Stone space,

that takes only finitely many values in L.

▶ This suggests that the right setting for infinite L is finitely valued

L-algebras.
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A restrictive but natural class: finitely valued algebras

Finitely valued L-algebra: an algebra A s.t. there is a set X and

an embedding A ↪→ LX s.t. each f ∈ A has finite image in L.

I.e., it has some representation with functions of finite range. (L-algebra:

an alg. in ISP(L).)

Under mild conditions (present in our duality result), this is equivalent to:

Canonically finitely valued L-algebra: an algebra A ∈ ISP(L) s.t.,
for each a ∈ A, the set { h(a) | h ∈ hom(A,L) } is finite.

I.e., the canonical representation A ↪→ Lhom(A,L) is with functions of finite

range.

Sanity checks:

▶ all finite powers Ln and their subalgebras are finitely L-valued;

▶ when L is finite, “finitely valued L-algebra” = “in ISP(L)”.
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Viewpoint via class operators

▶ For a dualizing algebra L, standard natural dualities work with the

whole ISP(L) = algebras built from L by isomorphisms, subalgebras

and arbitrary products.

▶ For an arbitrary (possibly infinite, non-topologized) L, we replace

P(L) (all powers LX ) by the class of finite-range powers:

FinRng(X ,L) := { f : X → L | f [X ] is finite } ≤ LX .

Define:

Pfr(L) := {FinRng(X ,L) | X any set }.

▶ Our duality will apply to ISPfr(L) (= the class of finitely valued

L-algebras), not to ISP(L). (For L finite, they coincide.)
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Assumptions on the dualizing algebra L

Think of {0, 1} (Bool. alg. / bdd. distr. lattice) or [0, 1] (MV-algebra).

▶ L has at least two distinct constant symbols.

▶ L has only trivial partial endomorphisms.

I.e., for any A ≤ L, the inclusion A ↪→ L is the unique homomorphism A → L.

▶ L has a (k+1)-ary near-unanimity term, with k ≥ 2.

(E.g.: L has a lattice reduct; → majority term, i.e. ternary near-unanimity term).

Remarks.

▶ Under these hypotheses, “finitely valued algebras” = “canonically

finitely valued algebras”. Moreover, the dual structure is purely

relational + topological (no function symbols).

▶ The (k+1)-ary near-unanimity term allows the dual space to be a

Stone space + k-ary constraints: e.g., in Priestley spaces, the order

is a set of binary constraints.
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Duality theorem (finitely valued setting)

Main result (A., Přenosil)

Let L satisfy the assumptions on the previous slide. Then the category

ISPfr(L) (finitely valued L-algebras and homomorphisms)

is dually equivalent to the category of k-ary L-Priestley spaces (and

appropriate maps).

In particular:

▶ if k = 2 (majority), the dual structure is driven by binary local

constraints (Priestley-flavoured);

▶ if L is finite, Pfr(L) = P(L) and we recover the usual natural-duality

scope.
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k-ary L-Priestley spaces (definition)

A k-ary L-Priestley space consists of:

▶ a Stone space X ;

▶ for every I ⊆ X with |I | ≤ k, a subalgebra AI ≤ LI , thought of as

the set of admissible L-valued local functions (on I ).

These data satisfy:

▶ Separation: for x ̸= y ∈ X there is f ∈ A{x,y} s.t. f (x) ̸= f (y).

▶ Extension: for I ⊆ X with |I | ≤ k and f ∈ AI , there is a continuous

g : X → L (with L discrete) s.t., for all J ⊆ X with |J| ≤ k,

g |J ∈ AJ .

Comment. When k = 2 (majority), the structure is determined by binary

constraints A{x,y}, echoing the Priestley paradigm.
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Example: recovering Priestley when L = 2, k = 2

Let L = 2 = {0, 1} (with ∧,∨, 0, 1), which has a majority term, so k = 2.

For a Priestley space (X ,≤) define, for each I ⊆ X with |I | ≤ 2,

AI := { f : I → 2 | f is order-preserving } ≤ 2I .

Then (X , (AI )I ) is a 2-ary 2-Priestley space:

▶ Separation: if x ̸= y , then either x ≰ y or y ≰ x . In the former

case, take x 7→ 1 and y 7→ 0, otherwise take x 7→ 0 and y 7→ 1.

▶ Extension: if f ∈ AI with |I | ≤ 2, then f extends to a continuous

g : X → 2 with g |J ∈ AJ for all |J| ≤ 2 (this is Priestley’s separation

axiom).
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From k-ary L-Priestley spaces to finitely valued algebras

The functor maps a k-ary L-Priestley space (X , (AI )I∈[X ]≤k ) to{
f : X → L

∣∣∣ f cont. (with L discrete), f |I ∈ AI for all I ∈ [X ]≤k
}
.

It is a finitely valued L-algebra: X compact + L discrete ⇒ a continuous

X → L has finite image.

E.g., in the Priestley case, we get

{ f : X → 2 | f continuous and order-preserving },

i.e. the lattice of clopen upsets of (X ,≤).
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For the MV-algebras L = [0, 1] ∩Q and L = [0, 1], our duality gives the

dualities of Cignoli–Dubuc–Mundici for locally finite MV-algebras, and of

Cignoli–Marra for weakly locally finite MV-algebras.

(This is after some further simplifications that make possible turning

binary constraints into unary constraints in certain cases, which we

describe in our preprint.)
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Main result (A., Přenosil)

Let L be an algebra such that:

▶ L has at least two distinct constant symbols;

▶ L has only trivial partial endomorphisms.

I.e., for any A ≤ L, the inclusion A ↪→ L is the unique homomorphism A → L.

▶ L has a (k+1)-ary near-unanimity term, with k ≥ 2.

(E.g.: L has a lattice reduct; → majority term, i.e. ternary near-unanimity term).

Then the category

ISPfr(L) (finitely valued L-algebras and homomorphisms)

is dual to the category of k-ary L-Priestley spaces.

Thank you!
ArXiv: Abbadini, Přenosil,

Duality for finitely valued algebras
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