Natural Duality for Finitely Valued Algebras

Marco Abbadini

Université Catholique de Louvain (Belgium)

AAL 2025 Conference 3 November 2025

Joint work with Adam Přenosil Preprint: arXiv:2505.11490

The beauty of dualities

- ► Dualities offer a second viewpoint on algebraic structures: geometric / spatial, rather than symbolic.
- Classical examples:

 - ► Priestley: BDL ← Priestley spaces
- ▶ An algebra corresponds to a structured space.

The power of dualities (beyond representation)

- ► Algebras in ISP(L) (the usual setting for such dualities) can already be **represented** as *L*-valued functions (with pointwise operations).
- ► A **duality** enriches this picture:
 - it characterizes the canonical representations,
 - it also represents morphisms in a natural way

```
f: \mathbf{A} \to \mathbf{B} \iff \text{continuous structure-preserving map,}
```

- giving a bijective correspondence (both on objects and morphisms).
- ► This leads to a two-way **dictionary**:
 - ▶ products of algebras ⟨⟨→⟩ sums of spaces ("logarithmic" compression)
 - ► coproducts of algebras ⟨→→ products of spaces (easier to describe)
 - congruences subspaces
 - ▶ free algebras powers of the dual of Free(1)
 - ► algebraic questions ← geometric/topological ones

Our starting point: positive MV-algebras

- ► We were interested in obtaining a duality for **positive MV-algebras**:
 - ▶ the $\{\oplus, \odot, \lor, \land, 0, 1\}$ -subreducts of MV-algebras,
 - ightharpoonup i.e. the quasivariety generated by [0,1] with these operations.
- \blacktriangleright Here, the natural dualizing algebra would be [0,1].
- ▶ Dualities of a similar flavour exist for MV-algebras:
 - Cignoli–Dubuc–Mundici (2003): locally finite MV-algebras. Dualizing algebra: [0, 1] ∩ Q,
 - Cignoli–Marra (2012): weakly locally finite MV-algebras. Dualizing algebra: [0,1].

- ightharpoonup [0, 1] is infinite.
- ► The general theory of natural dualities is well developed for **finite** dualizing algebras **L**.
- ► There are extensions to some infinite L, but they typically rely on equipping L with a compact Hausdorff topology and using it in the duality.
- ► The MV-dualities mentioned above follow a *different* pattern:
 - ▶ no topology is used on **L** (even for L = [0, 1]),
 - but at a price: the duality applies not to all of ISP(L), but to a restricted class of algebras.
- ► **Goal:** provide a natural-duality framework that generalizes this MV-style phenomenon to other infinite untopologized dualizing algebras **L**.

A clue from the MV side

- ▶ In both Cignoli-Dubuc-Mundici (2003) and Cignoli-Marra (2012), the duality works because elements of the algebras behave like functions with finite range in L.
- ▶ Intuition: think of $a \in A$ as an **L**-valued function on a Stone space, that takes only finitely many values in **L**.
- ► This suggests that the right setting for infinite L is **finitely valued** L-algebras.

A restrictive but natural class: finitely valued algebras

Finitely valued L-algebra: an algebra A s.t. there is a set X and an embedding $A \hookrightarrow L^X$ s.t. each $f \in A$ has finite image in L.

I.e., it has *some* representation with functions of finite range. (L-algebra: an alg. in $\mathbb{ISP}(L)$.)

Under mild conditions (present in our duality result), this is equivalent to:

Canonically finitely valued L-algebra: an algebra $\mathbf{A} \in \mathbb{ISP}(\mathbf{L})$ s.t., for each $a \in \mathbf{A}$, the set $\{ h(a) \mid h \in \mathsf{hom}(\mathbf{A}, \mathbf{L}) \}$ is finite.

I.e., the canonical representation $\mathbf{A} \hookrightarrow \mathbf{L}^{\mathsf{hom}(\mathbf{A},\mathbf{L})}$ is with functions of finite range.

Sanity checks:

- \triangleright all finite powers L^n and their subalgebras are finitely L-valued;
- ▶ when **L** is finite, "finitely valued **L**-algebra" = "in $\mathbb{SP}(\mathbf{L})$ ".

Viewpoint via class operators

- For a dualizing algebra \mathbf{L} , standard natural dualities work with the whole $\mathbb{ISP}(\mathbf{L}) = \text{algebras}$ built from \mathbf{L} by isomorphisms, subalgebras and arbitrary products.
- For an arbitrary (possibly infinite, non-topologized) L, we replace $\mathbb{P}(L)$ (all powers L^X) by the class of **finite-range powers**:

$$FinRng(X, \mathbf{L}) := \{ f : X \to \mathbf{L} \mid f[X] \text{ is finite} \} \leq \mathbf{L}^X.$$

Define:

$$\mathbb{P}^{\mathrm{fr}}(\mathbf{L}) \coloneqq \{ \operatorname{\mathsf{FinRng}}(X, \mathbf{L}) \mid X \text{ any set } \}.$$

Our duality will apply to ISP^{fr}(L) (= the class of finitely valued L-algebras), not to ISP(L). (For L finite, they coincide.)

Assumptions on the dualizing algebra **L**

Think of $\{0,1\}$ (Bool. alg. / bdd. distr. lattice) or [0,1] (MV-algebra).

- L has at least two distinct constant symbols.
- L has only trivial partial endomorphisms.
 I.e., for any A ≤ L, the inclusion A → L is the unique homomorphism A → L.
- ▶ L has a (k+1)-ary **near-unanimity** term, with $k \ge 2$. (E.g.: L has a lattice reduct; \rightarrow majority term, i.e. ternary near-unanimity term).

Remarks.

- ► Under these hypotheses, "finitely valued algebras" = "canonically finitely valued algebras". Moreover, the dual structure is purely relational + topological (no function symbols).
- ▶ The (k+1)-ary **near-unanimity** term allows the dual space to be a Stone space + k-ary constraints: e.g., in Priestley spaces, the order is a set of binary constraints.

Duality theorem (finitely valued setting)

Main result (A., Přenosil)

Let L satisfy the assumptions on the previous slide. Then the category

 $\mathbb{ISP}^{fr}(L)$ (finitely valued L-algebras and homomorphisms)

is dually equivalent to the category of k-ary L-Priestley spaces (and appropriate maps).

In particular:

- ▶ if k = 2 (majority), the dual structure is driven by **binary** local constraints (Priestley-flavoured);
- ▶ if **L** is finite, $\mathbb{P}^{fr}(\mathbf{L}) = \mathbb{P}(\mathbf{L})$ and we recover the usual natural-duality scope.

k-ary **L**-Priestley spaces (definition)

A k-ary L-Priestley space consists of:

- ▶ a Stone space *X*;
- ▶ for every $I \subseteq X$ with $|I| \le k$, a **subalgebra A**_I $\le L^I$, thought of as the set of admissible **L**-valued local functions (on I).

These data satisfy:

- ▶ **Separation:** for $x \neq y \in X$ there is $f \in \mathbf{A}_{\{x,y\}}$ s.t. $f(x) \neq f(y)$.
- **Extension:** for $I \subseteq X$ with $|I| \le k$ and $f \in \mathbf{A}_I$, there is a continuous $g: X \to \mathbf{L}$ (with \mathbf{L} discrete) s.t., for all $J \subseteq X$ with $|J| \le k$, $g|_J \in \mathbf{A}_J$.

Comment. When k=2 (majority), the structure is determined by **binary** constraints $\mathbf{A}_{\{x,y\}}$, echoing the Priestley paradigm.

Example: recovering Priestley when L = 2, k = 2

Let $\mathbf{L} = \mathbf{2} = \{0,1\}$ (with $\wedge, \vee, 0,1$), which has a majority term, so k=2. For a Priestley space (X,\leq) define, for each $I\subseteq X$ with $|I|\leq 2$,

$$\mathbf{A}_{I} := \{ f : I \rightarrow \mathbf{2} \mid f \text{ is order-preserving } \} \leq \mathbf{2}^{I}.$$

Then $(X, (\mathbf{A}_I)_I)$ is a 2-ary **2**-Priestley space:

- ▶ **Separation:** if $x \neq y$, then either $x \nleq y$ or $y \nleq x$. In the former case, take $x \mapsto 1$ and $y \mapsto 0$, otherwise take $x \mapsto 0$ and $y \mapsto 1$.
- **Extension:** if $f \in \mathbf{A}_I$ with $|I| \le 2$, then f extends to a continuous $g: X \to \mathbf{2}$ with $g|_J \in \mathbf{A}_J$ for all $|J| \le 2$ (this is Priestley's separation axiom).

From k-ary **L**-Priestley spaces to finitely valued algebras

The functor maps a k-ary **L**-Priestley space $(X, (\mathbf{A}_I)_{I \in [X]^{\leq k}})$ to

$$\Big\{\,f\colon X\to \mathbf{L}\,\,\Big|\,\,f \text{ cont. (with }\mathbf{L}\text{ discrete), }f|_I\in \mathbf{A}_I\text{ for all }I\in [X]^{\leq k}\,\Big\}.$$

It is a finitely valued **L**-algebra: X compact + **L** discrete \Rightarrow a continuous $X \rightarrow \mathbf{L}$ has finite image.

E.g., in the Priestley case, we get

$$\{ f : X \to 2 \mid f \text{ continuous and order-preserving } \},$$

i.e. the lattice of clopen upsets of (X, \leq) .

For the MV-algebras $\mathbf{L} = [0,1] \cap \mathbb{Q}$ and $\mathbf{L} = [0,1]$, our duality gives the dualities of Cignoli–Dubuc–Mundici for locally finite MV-algebras, and of Cignoli–Marra for weakly locally finite MV-algebras.

(This is after some further simplifications that make possible turning binary constraints into unary constraints in certain cases, which we describe in our preprint.)

Main result (A., Přenosil)

Let **L** be an algebra such that:

- L has at least two distinct constant symbols;
- L has only trivial partial endomorphisms.

I.e., for any $\mathbf{A} \leq \mathbf{L}$, the inclusion $\mathbf{A} \hookrightarrow \mathbf{L}$ is the unique homomorphism $\mathbf{A} \to \mathbf{L}$.

▶ L has a (k+1)-ary **near-unanimity** term, with $k \ge 2$. (E.g.: L has a lattice reduct; \rightarrow majority term, i.e. ternary near-unanimity term).

Then the category

 $\mathbb{ISP}^{fr}(L)$ (finitely valued L-algebras and homomorphisms)

is dual to the category of k-ary L-Priestley spaces.

Thank you!

ArXiv: Abbadini, Přenosil, Duality for finitely valued algebras

