Is the category of locally finite MV-algebras equivalent to an equational class?

Marco Abbadini

University of Salerno

Nonclassical Logic Webinar 21 May 2021

Based on the joint work with Luca Spada Are locally finite MV-algebras a variety? Preprint at arXiv:2102.11913

MV-algebras

An *MV-algebra* is an algebra in $\mathbb{HSP}(\langle [0,1]; \oplus, \neg, 0 \rangle)$, where

$$x \oplus y \coloneqq \min\{x + y, 1\},$$

 $\neg x \coloneqq 1 - x,$
 $0 \coloneqq \text{the element } 0.$

(MV-algebras are the unit intervals of Abelian lattice-ordered groups with strong order unit.)

Locally finite algebras

Definition

An algebra is called *locally finite* if every finitely generated subalgebra is finite.

Locally finite MV-algebras? Let us first describe the simplest locally finite MV-algebras: those which can be embedded in [0,1]. The MV-algebra [0,1] is **not** locally finite: for any irrational $x \in [0,1]$, the subalgebra of [0,1] generated by x is infinite.

- ▶ For $n \in \mathbb{N}_{>0}$, $\left\{\frac{0}{n}, \frac{1}{n}, \dots, \frac{n-1}{n}, \frac{n}{n}\right\}$ is locally finite.
- ▶ $[0,1] \cap \mathbb{Q}$ is locally finite.

Locally finite subalgebras of [0,1]= subalgebras of $[0,1]\cap \mathbb{Q}.$

Subalgebras of $[0,1] \cap \mathbb{Q}$ can be encoded by *supernatural numbers*.

Encoding of subalgebras of $[0,1] \cap \mathbb{Q}$

A finite subalgebra $\left\{\frac{0}{n},\frac{1}{n},\ldots,\frac{n-1}{n},\frac{n}{n}\right\}$ of $[0,1]\cap\mathbb{Q}$ can be encoded by n.

An arbitrary subalgebra of $[0,1]\cap \mathbb{Q}$ can be encoded by a "supernatural number", which generalizes the prime factorization of a positive integer.

 $\mathbb{P} \coloneqq \text{set of pime numbers.}$

Definition

A *supernatural number* is a function $\mathbb{P} \to \mathbb{N} \cup \{\infty\}$.

(Convention: $\mathbb{N} := \{0, 1, 2, \dots\}, \mathbb{N}_{>0} := \{1, 2, \dots\}.$)

 $\mathcal{N} \coloneqq \text{set of supernatural numbers.}$

A quotient of ${\mathcal N}$ is used to classify torsion-free groups of rank 1.

Injection $\mathbb{N}_{>0} \hookrightarrow \mathcal{N}$ mapping $n \in \mathbb{N}_{>0}$ to its prime factorization

$$\nu_n \colon \mathbb{P} \longrightarrow \mathbb{N} \cup \{\infty\}$$
$$p \longmapsto \max \left\{ j \in \mathbb{N} \mid p^j \text{ divides } n \right\}.$$

E.g.,
$$\nu_{12}(p) = \begin{cases} 2 & \text{if } p = 2 \\ 1 & \text{if } p = 3 \\ 0 & \text{otherwise.} \end{cases}$$

A supernatural number ν is said to be *finite* if there exists $n \in \mathbb{N}_{>0}$ such that $\nu = \nu_n$, i.e.

- \triangleright ∞ does not belong to the range of ν ,
- $\triangleright \ \nu(p) = 0$ for all but finitely many $p \in \mathbb{P}$.

$$\nu \le \nu' \iff \forall p \in \mathbb{P} \ \nu(p) \le \nu'(p).$$

The order on \mathcal{N} generalizes the divisibility order of $\mathbb{N}_{>0}$ (and corresponds to the inclusion of subalgebras of $[0,1] \cap \mathbb{Q}$).

▶ To a subalgebra A of $[0,1] \cap \mathbb{Q}$, we associate the supernatural number

$$\nu \colon \mathbb{P} \longrightarrow \mathbb{N} \cup \{\infty\}$$
$$p \longmapsto \sup \left\{ j \in \mathbb{N} \mid \frac{1}{p^j} \in A \right\}.$$

E.g.: to $\left\{\frac{0}{12},\frac{1}{12},\ldots,\frac{11}{12},\frac{12}{12}\right\}$ we associate ν_{12} . E.g.: to $\left\{\frac{i}{2^k}\mid k\in\mathbb{N},i\in\{0,\ldots,2^k\}\right\}$ we associate the supernatural number ν s.t. $\nu(p)=\begin{cases}\infty & \text{if }p=2\\0 & \text{otherwise.}\end{cases}$

▶ To a supernatural number $\nu : \mathbb{P} \longrightarrow \mathbb{N} \cup \{\infty\}$ we associate the subalgebra

$$\{x \in [0,1] \cap \mathbb{Q} \mid \nu_{\operatorname{den}(x)} \le \nu\}.$$

Theorem [Cignoli, Dubuc, Mundici, 2003]

An MV-algebra A is locally finite iff there is a set I such that A is isomorphic to a subalgebra $\iota(A)$ of the MV-algebra $([0,1]\cap\mathbb{Q})^I$ formed by functions of finite range.

Let I be a set. For every $i \in I$, let A_i be a subalgebra of the MV-algebra $[0,1] \cap \mathbb{Q}$. Set

$$A \coloneqq \{f \colon I \to [0,1] \cap \mathbb{Q} \mid (\forall i \in I \ f(i) \in A_i), \ \mathrm{Im}(f) \ \mathrm{is \ finite} \}.$$

Topologizing → duality [Cignoli, Dubuc, Mundici, 2003].

Topology on \mathcal{N} : take as elements of a closed sub-basis for \mathcal{N} all sets of the form

$$\{\nu \in \mathcal{N} \mid \nu(p) \le k\}$$

for $p \in \mathbb{P}$ and $k \in \mathbb{N}$.

Definition

A *multiset* is a pair (X, ζ) , where X is a Stone space, and $\zeta \colon X \to \mathcal{N}$ is a continuous map.

For $x \in X$, the supernatural number $\zeta(x)$ is called the *denominator* of x.

Given a multiset (X, ζ) , we obtain a locally finite MV-algebra

 $\{f \colon X \to [0,1] \cap \mathbb{Q} \mid f \text{ is cont., } \operatorname{Im}(f) \text{ is finite}, \forall x \in X \ f(x) \in A_x\},$

where A_x is the subalgebra of $[0,1] \cap \mathbb{Q}$ associated with $\zeta(x)$.

- MultiSet := category of multisets and denominator-decreasing continuous functions.
 - A function $f:(X,\zeta_X)\to (Y,\zeta_Y)$ decreases denominators if

$$\forall x \in X \quad \zeta_Y(f(x)) \le \zeta_X(x).$$

Theorem [Cignoli, Dubuc, Mundici, 2003]

The categories

- ► MV_{loc.fin.} of locally finite MV-algebras, and
- MultiSet of multisets

are dually equivalent.

- ► A homomorphic image of a locally finite algebra is locally finite.
- A subalgebra of a locally finite algebra is locally finite.
- ► The product of finitely many locally finite algebras is locally finite.
- ⇒ The class of locally finite MV-algebras is closed under homomorphic images, subalgebras and finite products.
 - ► The class of locally finite MV-algebras is not closed under arbitrary products: e.g., $[0,1] \cap \mathbb{Q}$ is locally finite, but, for any infinite set X, $([0,1] \cap \mathbb{Q})^X$ is not locally finite.
 - ► MV_{loc fin.} is complete and cocomplete. In particular, it admits all products in the categorical sense. E.g.: for any set X, the categorical product of |X| many copies of $[0,1] \cap \mathbb{Q}$ is

$$\{f \in ([0,1] \cap \mathbb{Q})^X \mid \operatorname{Im}(f) \text{ is finite}\}.$$

Duality for locally finite MV-algebras

The class of locally finite MV-algebras is closed under homomorphic images, subalgebras and finite products; furthermore, $MV_{loc.fin.}$ admits all products in the categorical sense.

Question [Mundici, 2011]

Is the category of locally finite MV-algebras equivalent to an equational class?

Answer: it depends. Finitary or infinitary algebras? Do we allow (possibly infinitely) many sorts?

Theorem (Negative result)

MV_{loc fin.} is not equivalent to any finitely-sorted quasi-variety of finitary algebras (let alone a single-sorted variety of finitary algebras).

Theorem (Positive results)

- 1. MV_{loc fin.} is equivalent to a single-sorted variety of infinitary algebras, with operations of at most countable arity.
- 2. MV_{loc fin.} is equivalent to a countably-sorted variety of finitary algebras.

Next part of the talk: sketch of the proofs, rough description of a variety that satisfies 2.

We use characterizations of categories equivalent to (single/many-sorted) varieties of (finitary/possibly infinitary) algebras.

We test whether the duals of these characterizations hold in MultiSet.

In the positive cases, the proof can be used to obtain a description of the variety.

Warning: the forgetful functor $MV_{loc,fin.} \rightarrow Set$ does not preserve products, and hence any possible equivalence between MV_{loc fin} and an equational class is not concrete.

Duality for locally finite MV-algebras

For our positive results, we use the following characterizations.

Theorem [Lawvere, 1963; Isbell, 1964, ...]

Let C be a locally small category.

- C is equivalent to a single-sorted variety of (possibly infinitary) algebras iff C is cocomplete, Barr-exact and C has a regular projective regular generator.
- C is equivalent to a many-sorted variety of finitary algebras iff C is cocomplete, Barr-exact and C has an abstractly finite regularly generating set of regular projective objects.
- 1. Special object: free algebra over a singleton.
- 2. Special set of objects: for each sort, the free algebra over an element placed in that particular sort.

We prove that MultiSet is co-(Barr-exact).

- 1. We exhibit a co-(regular projective regular generator) in MultiSet.
- 2. We exhibit a co-(abstractly finite regularly generating set of regular projective objects) in MultiSet.

Theorem (Positive results)

- 1. MV_{loc fin.} is equivalent to a single-sorted variety of infinitary algebras, with operations of at most countable arity.
- 2. MV_{loc fin.} is equivalent to a countably-sorted variety of finitary algebras.

Proposition

A set of objects \mathcal{G} in MultiSet is a co-(abstractly finite regularly generating set of projective objects) if (and only if?) the following conditions hold.

- 1. For every object X of \mathcal{G} , the underlying set of X is finite, the denominator of each point of X is finite, and there exists an element of denominator ν_1 .
- 2. There exists an object $X \in \mathcal{G}$ with two distinct elements of denominator ν_1 .
- 3. For all $p\in\mathbb{P},$ $k\in\mathbb{N}_{>0},$ there exists $x\in X\in\mathcal{G}$ with denominator $\nu_{p^k}.$

Notation

Duality for locally finite MV-algebras

For $n \in \mathbb{N}_{>0}$, we define the multiset $D_n = \{0,1\}$ with $\zeta(0) = \nu_1$ and $\zeta(1) = \nu_n$.

An example of a co-(abstractly finite regularly generating set of projective objects) in MultiSet is the set $\{D_n \mid n \in \mathbb{N}_{>0}\}$.

Choosing this set leads to the countably-sorted variety of finitary algebras in the following slides.

We describe a countably-sorted finitary clone **A** such that

$$\mathbb{SP}(\mathbf{A}) = \mathbb{HSP}(\mathbf{A}) \overset{\mathrm{op}}{\cong} \mathsf{MultiSet}.$$

Set of sorts = $\mathbb{N}_{>0}$.

In each sort, the value of **A** is $\{0,1\}$. For $s_1,\ldots,s_n,t\in\mathbb{N}_{>0}$, the operations of arity $(s_1\ldots s_n,t)$ are the functions

$$f: \underbrace{\{0,1\}}_{\text{sort } s_1} \times \cdots \times \underbrace{\{0,1\}}_{\text{sort } s_n} \longrightarrow \underbrace{\{0,1\}}_{\text{sort } t}$$

such that, for every $(x_1, \ldots, x_n) \in \{0, 1\} \times \cdots \times \{0, 1\}$,

$$t^{f(x_1,\ldots,x_n)}$$
 divides $\operatorname{lcm}\{s_i^{x_i} \mid i \in \{1,\ldots,n\}\},\$

i.e.,

either
$$f(x_1, \ldots, x_n) = 0$$

or t divides $\operatorname{lcm}\{s_i \mid i \in \{1, \ldots, n\}, x_i = 1\}$.

• Case $s_1 = \dots = s_n = t = 1$.

The operations of arity (1...1,1) are all the functions

$$f : \underbrace{\{0,1\}}_{\mathsf{sort} \ 1} \times \cdots \times \underbrace{\{0,1\}}_{\mathsf{sort} \ 1} \longrightarrow \underbrace{\{0,1\}}_{\mathsf{sort} \ 1}$$

i.e. all Boolean operations.

Thus, in sort 1 we have a Boolean ring (operations generated by $0, +, \cdot, 1$).

Case $s_1 = \cdots = s_n = t \neq 1$. The operations of arity $(t \dots t, t)$ are all the functions

$$f: \underbrace{\{0,1\}}_{\text{sort } t} \times \cdots \times \underbrace{\{0,1\}}_{\text{sort } t} \longrightarrow \underbrace{\{0,1\}}_{\text{sort } t}$$

such that f(0, ..., 0) = 0.

Thus, in sort $t \neq 1$ we have a Boolean rng (operations generated by $0, +, \cdot$).

The answer

id:
$$\underbrace{\{0,1\}}_{\text{sort }s} \longrightarrow \underbrace{\{0,1\}}_{\text{sort }t}$$

is an operation of A iff t divides s.

▶ For all $s_1, s_2 \in \mathbb{N}_{>0}$, we have an operation

$$\vdots \underbrace{\{0,1\}}_{\mathsf{sort} \ s_1} \times \underbrace{\{0,1\}}_{\mathsf{sort} \ s_2} \longrightarrow \underbrace{\{0,1\}}_{\mathsf{sort} \ \mathsf{lcm}\{s_1,s_2\}}$$

$$(x,y) \longmapsto x \cdot y.$$

(The operations described above and in the previous slide generate the clone \mathbf{A} ?)

Then,

$$\mathbb{SP}(\mathbf{A}) = \mathbb{HSP}(\mathbf{A}) \overset{\mathrm{op}}{\cong} \mathsf{MultiSet} \overset{\mathrm{op}}{\cong} \mathsf{MV}_{\mathsf{loc.fin.}}$$

$\mathbb{SP}(\mathbf{A})$	MultiSet	$MV_{loc.fin.}$
A	$\{*\}$ with denominator $p\mapsto\infty$	$[0,1] \cap \mathbb{Q}$
subalg. of ${f A}$	$\{*\}$ with some denominator	subalg. of $[0,1]\cap \mathbb{Q}$

E.g.: the subalgebra $\{0,1\}\subseteq [0,1]\cap \mathbb{Q}$ corresponds to the subalgebra $\mathbf B$ of $\mathbf A$ whose value in sort n is

$$\begin{cases} \{0,1\} & \text{if } n=1\\ \{0\} & \text{otherwise.} \end{cases}$$

E.g.: the subalgebra $\left\{\frac{i}{2^k} \mid k \in \mathbb{N}, i \in \{0, \dots, 2^k\}\right\} \subseteq [0, 1] \cap \mathbb{Q}$ corresponds to the subalgebra \mathbf{D} of \mathbf{A} whose value in sort n is

$$\begin{cases} \{0,1\} & \text{if } \exists k \in \mathbb{N} \text{ s.t. } n=2^k, \\ \{0\} & \text{otherwise.} \end{cases}$$

Question [Mundici, 2011]

Is the category of locally finite MV-algebras equivalent to an equational class?

Theorem (Negative result)

MV_{loc.fin.} is not equivalent to any finitely-sorted quasi-variety of finitary algebras (let alone a single-sorted variety of finitary algebras).

Theorem (Positive results)

- 1. MV_{loc.fin.} is equivalent to a single-sorted variety of infinitary algebras, with operations of at most countable arity.
- 2. $MV_{loc.fin.}$ is equivalent to a countably-sorted variety of finitary algebras.

Thank you for your attention!