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Compact ordered spaces

Compact ordered spaces: introduced by [Nachbin, 1948] as an
ordered version of compact Hausdorff spaces.

Definition [Nachbin, 1948]
A compact ordered space is a compact space X with a partial order ≤
which is closed in X ×X .

CompOrd: category of compact ordered spaces and
order-preserving continuous maps.
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Compact ordered spaces

Compact ordered spaces : compact Hausdorff spaces
= Priestley spaces : Boolean spaces.

Compact ordered space ∼= Closed subspace of a power of ([0, 1],≤).
Compact Hausdorff space ∼= Closed subspace of a power of [0, 1].
Priestley space ∼= Closed subspace of a power of ({0, 1},≤).
Boolean space ∼= Closed subspace of a power of {0, 1}.
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Dualities with varieties

BooSp
op←→ finitary variety [Stone, 1936]

Priestley
op←→ finitary variety [Priestley, 1970]

CompHaus
op←→ (infinitary) variety [Duskin, 1969]

CompOrd
op←→ ???

Open question [Hofmann, Neves and Nora, 2018]

Is the category of compact ordered spaces dually equivalent to a
(possibly infinitary) variety?
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Characterization of quasivarieties

An object G is said to be

Regular projective if hom(G,−) preserves regular epim.;

Regular generator if hom(G,−) reflects regular epim.

hom(Free1,−) ∼= forgetful functor

Theorem (Characterization of quasivarieties)

A category is equivalent to a (possibly infinitary) quasivariety iff it is
cocomplete and it admits a regular projective regular generator.

Idea: the regular projective regular generator of the statement is the
free object Free1 over a singleton.
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Characterization of varieties

Theorem (Characterization of varieties)

A category is equivalent to a (possibly infinitary) variety iff it is
equivalent to a quasivariety and internal equivalence relations are
effective.
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Dualities with varieties

compl. reg. inj. eff. int.
reg. cogen. eq. corel.

BooSp ✓ {0, 1} ✓

(abstr. cofin.)
Priestley ✓ {0, 1} ✓

(abstr. cofin.)
CompHaus ✓ [0, 1] ✓

(not abstr. cofin.)
CompOrd ✓ [0, 1] ?

(not abstr. cofin.)

Dual to
fin. variety

Dual to
fin. variety

Dual to
inf. variety

Dual to
inf. quasivariety
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CompOrdop is a variety

Theorem [A. and Reggio, 2020]
Internal equivalence relations in CompOrdop are effective.

Theorem
The category CompOrd of compact ordered spaces is dually
equivalent to an (infinitary) variety.

CompOrd
op∼= SP([0, 1]) = HSP([0, 1])

Function symbols of arity a cardinal κ:

order-preserving continuous functions [0, 1]κ → [0, 1].

CompOrdop is Barr-exact. So are the categories of strong proximity
lattices and of stably compact frames.
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Negative results

Theorem
CompOrd is not dually equivalent to any finitary variety.
In fact, CompOrd is not dually equivalent to

1. any finitely accessible category;

2. any first-order definable class of structures (no faithful functor
CompOrdop → Set preserves directed colimits)
[Lieberman, Rosický and Vasey, 2019];

3. any class of finitary algebras closed under products and
subalgebras.
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Finite equational axiomatisation

Does there exist a manageable axiomatization of CompOrdop?

CompOrdop admits a finite equational axiomatisation, i.e. one
which uses only finitely many function symbols and finitely many
equational axioms.
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Which primitive operations?

Idea: take

1. a class C of order-preserving continuous functions from powers
of [0, 1] to [0, 1] that generate a clone A = (A[κ])κ∈Card on
[0, 1] such that, for every cardinal κ, every order-preserving
continuous function [0, 1]κ → [0, 1] is the uniform limit of a
sequence in A[κ].

2. an order-preserving continuous function [0, 1]N>0 → [0, 1]
which sends every sequence (x1, x2, . . . ) satisfying
|xn+1 − xn| ≤ 1

2n to its limits.

Which classes C of order-preserving continuous operations on [0, 1]
satisfy 1?
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Closure of clones under uniform limits

Proposition

TFAE for a clone A = (A[κ])κ∈Card of order-preserving continuous
functions on [0, 1] which contains ∨ and ∧.

1. For every cardinal κ, every order-preserving continuous
function [0, 1]κ → [0, 1] is the uniform limit of a sequence in
A[κ].

2. 2.1 A[0] is dense in [0, 1], and
2.2 for all x, y, s, t ∈ (0, 1) with x < y there exists g ∈ A[1] such

that g(x) < s and g(y) > t.
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Primitive operations

Operation Definition Why taking them?
x ∨ y := max{x, y} To meet the hypothesis
x ∧ y := min{x, y} of the criterion
x⊕ y := min{x+ y, 1} To stretch [0, 1] via
x⊙ y := max{x+ y − 1, 0} x 7→ x⊕ x, x 7→ x⊙ x

0 := 0 To obtain a dense
1 := 1 subset of [0, 1]

h(x) := x
2 (when combined

j(x) := 1
2 + x

2 with ⊕ and ⊙)
λ(x1, x2, . . . ) ≈ limn→∞ xn To close under

(“=” if |xn+1 − xn| ≤ 1
2n ) unif. lims
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Generalisation of Mundici’s theorem

In the search of a reasonable set of axioms for ∨, ∧, ⊕, ⊙, 0, 1,
a generalisation of a theorem by D. Mundici was obtained.

Theorem [Mundici, 1986]
The categories of unital Abelian ℓ-groups and of MV-algebras are
equivalent.

Theorem
The categories of unital commutative distributive ℓ-monoids and of
MV-monoidal algebras are equivalent.
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Lattice-ordered monoids

Definition
Unital commutative distributive ℓ-monoid: ⟨M ; +,∨,∧, 0, 1,−1⟩ s.t.

1. ⟨M ;∨,∧⟩ is a distributive lattice.

2. ⟨M ; +, 0⟩ is a commutative monoid.

3. The operation + distributes over ∨ and ∧.

4. −1 ≤ 0 ≤ 1.

5. −1 + 1 = 0.

6. ∀x ∈M , ∃n ∈ N s.t. n(−1) ≤ x ≤ n1.

Example
For X a compact ordered space,

{f : X → R | f is order-preserving and continuous}.
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Unit interval functor

Given a unital commutative distributive ℓ-monoid M, one equips
the set

Γ(M) := {x ∈M | 0 ≤ x ≤ 1}

with the operations ∨, ∧, 0, and 1 by restriction, and

x⊕ y := (x+ y) ∧ 1,

x⊙ y := (x+ y − 1) ∨ 0.
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MV-monoidal algebras

Definition
MV-monoidal algebra: ⟨A;⊕,⊙,∨,∧, 0, 1⟩ s.t.

1. ⟨A;∨,∧⟩ is a distributive lattice.

2. ⟨A;⊕, 0⟩ and ⟨A;⊙, 1⟩ are commutative monoids.

3. Both the operations ⊕ and ⊙ distribute over both ∨ and ∧.

4. (x⊕ y)⊙ ((x⊙ y)⊕ z) = (x⊙ (y ⊕ z))⊕ (y ⊙ z).

5. (x⊙ y)⊕ z = ((x⊕ y)⊙ ((x⊙ y)⊕ z)) ∨ z.

6. (x⊕ y)⊙ z = ((x⊙ y)⊕ ((x⊕ y)⊙ z)) ∧ z.

Theorem
The categories of unital commutative distributive ℓ-monoids and of
MV-monoidal algebras (with homomorphisms) are equivalent.
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Vietoris functor

We have a Vietoris endofunctor

V : CompOrd −→ CompOrd

X 7−→ V (X) := {closed up-sets of X}.

Theorem [Hofmann, Neves and Nora, 2018]
The category of coalgebras for V : CompOrd→ CompOrd is dually
equivalent to an (infinitary) quasivariety.

They added to the theory of SP([0, 1]) a unary op. ♢, with

1. ♢0 = 0;

2. ♢(x ∨ y) = ♢x ∨ ♢y;

3. for all t ∈ [0, 1], ♢(x⊙ t) = ♢x⊙ t;

4. ♢(x⊙ y) ≤ ♢x⊙ ♢y.
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Vietoris functor

Theorem
The category of coalgebras for V : CompOrd→ CompOrd is dually
equivalent to an (infinitary) variety.

Future research: obtain a purely categorical proof of the last result.
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Recap

▶ The category of compact ordered spaces is dually equivalent to
an (infinitary) variety.

▶ We have a finite equational axiomatisation (= finitely many
operations and equational axioms).

▶ The employment of operations of infinite arity is necessary.
▶ En passant, we generalized Mundici’s equivalence to unital

distributive commutative ℓ-monoids.
▶ The category of coalgebras for the Vietoris endofunctor on

CompOrd is dually equivalent to an (infinitary) variety.

Thank you for your attention.
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