The opposite of the category of compact ordered spaces as an infinitary variety

Marco Abbadini

Università degli Studi di Salerno, Italy

June 13, 2021 BLAST 2021, Las Cruces, NM, Online

Based on On the axiomatisability of the dual of compact ordered spaces PhD thesis, University of Milan, 2021.

Marco Abbadini

The opposite of the category of compact ordered spaces as an infinitary variety

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
●00000	O	O		0000	00	O
Com	pact o	rdered	spaces			

Compact ordered spaces: introduced by [Nachbin, 1948] as an ordered version of compact Hausdorff spaces.

Definition [Nachbin, 1948]

A *compact ordered space* is a compact space X with a partial order \leq which is closed in $X \times X$.

CompOrd: category of compact ordered spaces and order-preserving continuous maps.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
○●○○○○	O	O		0000	00	O
Com			1			

Compact ordered spaces

Compact ordered spaces : compact Hausdorff spaces = Priestley spaces : Boolean spaces.

Compact ordered space \cong Closed subspace of a power of $([0, 1], \leq)$. Compact Hausdorff space \cong Closed subspace of a power of [0, 1]. Priestley space \cong Closed subspace of a power of $(\{0, 1\}, \leq)$. Boolean space \cong Closed subspace of a power of $\{0, 1\}$.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ -monoids	Vietoris	Recap
○○●○○○	O	O		0000	00	O
Dual	ities w	/ith va	rieties			

BooSp	$\stackrel{op}{\longleftrightarrow}$	finitary variety [Stone, 1936]
Priestley	$\stackrel{op}{\longleftrightarrow}$	finitary variety [Priestley, 1970]
CompHaus	$\stackrel{op}{\longleftrightarrow}$	(infinitary) variety [Duskin, 1969]
CompOrd	$\stackrel{op}{\longleftrightarrow}$???

Open question [Hofmann, Neves and Nora, 2018]

Is the category of compact ordered spaces dually equivalent to a (possibly infinitary) variety?

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
000●00	O	O		0000	00	O

Characterization of quasivarieties

An object G is said to be

Regular projective if hom(G, -) preserves regular epim.;

Regular generator if hom(G, -) reflects regular epim.

 $hom(Free_1, -) \cong forgetful functor$

Theorem (Characterization of quasivarieties)

A category is equivalent to a (possibly infinitary) quasivariety iff it is cocomplete and it admits a regular projective regular generator.

Idea: the regular projective regular generator of the statement is the free object $Free_1$ over a singleton.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ -monoids	Vietoris	Recap
000000	0	0	0000	0000	00	0

Characterization of varieties

Theorem (Characterization of varieties)

A category is equivalent to a (possibly infinitary) variety iff it is equivalent to a quasivariety and internal equivalence relations are effective.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
00000●	O	O		0000	00	O
		1.1				

Dualities with varieties

	compl.	reg. inj.	eff. int.	
		reg. cogen.	eq. corel.	
BooSp	 Image: A set of the set of the	$\{0, 1\}$	✓	Dual to
		(abstr. cofin.)		fin. variety
Priestley	 Image: A set of the set of the	$\{0, 1\}$	 Image: A second s	Dual to
		(abstr. cofin.)		fin. variety
CompHaus	 Image: A set of the set of the	[0, 1]	1	Dual to
		(not abstr. cofin.)		inf. variety
CompOrd	✓	[0, 1]	?	Dual to
		(not abstr. cofin.)		inf. quasivariety

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
000000	•	O		0000	00	O

CompOrd^{op} is a variety

Theorem [A. and Reggio, 2020]

Internal equivalence relations in CompOrd^{op} are effective.

Theorem

The category CompOrd of compact ordered spaces is dually equivalent to an (infinitary) variety.

$$\mathsf{CompOrd} \stackrel{\mathsf{op}}{\cong} \mathbb{SP}([0,1]) = \mathbb{HSP}([0,1])$$

Function symbols of arity a cardinal κ :

order-preserving continuous functions $[0,1]^{\kappa} \rightarrow [0,1]$.

CompOrd^{op} is Barr-exact. So are the categories of strong proximity lattices and of stably compact frames.

Marco Abbadini

	-						
Known 000000	Positive O	Negative •	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids	Vietoris 00	Recap O	

Negative results

Theorem

CompOrd is *not* dually equivalent to any finitary variety. In fact, CompOrd is *not* dually equivalent to

- 1. any finitely accessible category;
- any first-order definable class of structures (no faithful functor CompOrd^{op} → Set preserves directed colimits) [Lieberman, Rosický and Vasey, 2019];
- 3. *any class of finitary algebras closed under products and subalgebras.*

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids	Vietoris	Recap
000000	O	O		0000	00	O

Finite equational axiomatisation

Does there exist a manageable axiomatization of CompOrd^{op}?

CompOrd^{op} admits a finite equational axiomatisation, i.e. one which uses only finitely many function symbols and finitely many equational axioms.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ -monoids	Vietoris	Recap
000000	O	O	○●○○	0000	00	O
NY/L +	1 · ·					

Which primitive operations?

Idea: take

- 1. a class C of order-preserving continuous functions from powers of [0,1] to [0,1] that generate a clone $\mathbf{A} = (A^{[\kappa]})_{\kappa \in \text{Card}}$ on [0,1] such that, for every cardinal κ , every order-preserving continuous function $[0,1]^{\kappa} \to [0,1]$ is the uniform limit of a sequence in $A^{[\kappa]}$.
- 2. an order-preserving continuous function $[0,1]^{\mathbb{N}>0} \to [0,1]$ which sends every sequence (x_1, x_2, \dots) satisfying $|x_{n+1} - x_n| \leq \frac{1}{2^n}$ to its limits.

Which classes C of order-preserving continuous operations on [0, 1] satisfy 1?

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids	Vietoris	Recap
000000	0	0	0000	0000	00	0

Closure of clones under uniform limits

Proposition

TFAE for a clone $\mathbf{A} = (A^{[\kappa]})_{\kappa \in \text{Card}}$ of order-preserving continuous functions on [0, 1] which contains \vee and \wedge .

1. For every cardinal κ , every order-preserving continuous function $[0,1]^{\kappa} \rightarrow [0,1]$ is the uniform limit of a sequence in $A^{[\kappa]}$.

2. 2.1
$$A^{[0]}$$
 is dense in $[0, 1]$, and
2.2 for all $x, y, s, t \in (0, 1)$ with $x < y$ there exists $g \in A^{[1]}$ such that $g(x) < s$ and $g(y) > t$.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids	Vietoris	Recap
000000	O	O		0000	00	O

Primitive operations

Operation	Definition	Why taking them?
$x \lor y$	$\coloneqq \max\{x, y\}$	To meet the hypothesis
$x \wedge y$	$\coloneqq \min\{x, y\}$	of the criterion
$x\oplus y$	$\coloneqq \min\{x+y,1\}$	To stretch $[0,1]$ via
$x \odot y$	$\coloneqq \max\{x+y-1,0\}$	$x \mapsto x \oplus x, x \mapsto x \odot x$
0	$\coloneqq 0$	To obtain a dense
1	$\coloneqq 1$	subset of $[0,1]$
h(x)	$:= \frac{x}{2}$	(when combined
$\mathbf{j}(x)$	$\coloneqq \frac{1}{2} + \frac{x}{2}$	with \oplus and \odot)
$\lambda(x_1, x_2, \dots)$	$\approx \lim_{n \to \infty} x_n$	To close under
	("=" if $ x_{n+1} - x_n \le \frac{1}{2^n}$)	unif. lims

Known 000000	Positive O	Negative O	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids ●000	Vietoris 00	Recap O

Generalisation of Mundici's theorem

In the search of a reasonable set of axioms for \lor , \land , \oplus , \odot , 0, 1, a generalisation of a theorem by D. Mundici was obtained.

Theorem [Mundici, 1986]

The categories of unital Abelian ℓ -groups and of MV-algebras are equivalent.

Theorem

The categories of *unital commutative distributive* ℓ *-monoids* and of *MV-monoidal algebras* are equivalent.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids	Vietoris	Recap
000000	O	O		○●○○	00	O

Lattice-ordered monoids

Definition

Unital commutative distributive ℓ -monoid: $\langle M; +, \lor, \land, 0, 1, -1 \rangle$ s.t.

- 1. $\langle M; \lor, \land \rangle$ is a distributive lattice.
- 2. $\langle M; +, 0 \rangle$ is a commutative monoid.
- 3. The operation + distributes over \lor and \land .
- **4.** $-1 \le 0 \le 1$.
- 5. -1 + 1 = 0.
- 6. $\forall x \in M, \exists n \in \mathbb{N} \text{ s.t. } n(-1) \leq x \leq n1.$

Example

For X a compact ordered space,

 $\{f \colon X \to \mathbb{R} \mid f \text{ is order-preserving and continuous}\}.$

Known 000000	Positive O	Negative O	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids 00●0	Vietoris 00	Recap O
Unit i	nterv	al func	ctor			

Given a unital commutative distributive $\ell\text{-monoid}\ \mathbf{M},$ one equips the set

$$\Gamma(\mathbf{M}) \coloneqq \{ x \in M \mid 0 \le x \le 1 \}$$

with the operations \lor , \land , 0, and 1 by restriction, and

$$\begin{aligned} x \oplus y &\coloneqq (x+y) \land 1, \\ x \odot y &\coloneqq (x+y-1) \lor 0. \end{aligned}$$

Known 000000	Positive O	Negative O	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ-monoids 000●	Vietoris 00	Recap O	
MV-n	nonoid	dal alg	ebras				

Definition

MV-monoidal algebra: $\langle A; \oplus, \odot, \lor, \land, 0, 1 \rangle$ s.t.

1. $\langle A; \lor, \land \rangle$ is a distributive lattice.

Ο

- 2. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids.
- 3. Both the operations \oplus and \odot distribute over both \lor and \land .
- $\hbox{4. } (x\oplus y)\odot ((x\odot y)\oplus z)=(x\odot (y\oplus z))\oplus (y\odot z).$
- 5. $(x \odot y) \oplus z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \lor z$.
- $\textbf{6.} \ (x\oplus y)\odot z=((x\odot y)\oplus ((x\oplus y)\odot z))\wedge z.$

Theorem

The categories of unital commutative distributive ℓ -monoids and of *MV*-monoidal algebras (with homomorphisms) are equivalent.

Marco Abbadini

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
000000	O	O		0000	●0	O
Vieto	oris fu	nctor				

We have a Vietoris endofunctor

$$\begin{split} V\colon \mathsf{CompOrd} &\longrightarrow \mathsf{CompOrd} \\ X \longmapsto V(X) \coloneqq \{\mathsf{closed\ up\text{-sets\ of}\ } X\}. \end{split}$$

Theorem [Hofmann, Neves and Nora, 2018]

The category of coalgebras for $V\colon\mathsf{CompOrd}\to\mathsf{CompOrd}$ is dually equivalent to an (infinitary) quasivariety.

They added to the theory of $\mathbb{SP}([0,1])$ a unary op. $\Diamond,$ with

1. $\Diamond 0 = 0;$

2.
$$\Diamond(x \lor y) = \Diamond x \lor \Diamond y;$$

3. for all $t \in [0, 1]$, $\Diamond(x \odot t) = \Diamond x \odot t$;

$$4. \ \Diamond (x \odot y) \le \Diamond x \odot \Diamond y.$$

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. ℓ -monoids	Vietoris	Recap
000000	O	O		0000	⊙●	O
Vieto	ris fu	nctor				

Theorem

The category of coalgebras for V: CompOrd \rightarrow CompOrd is dually equivalent to an (infinitary) variety.

Future research: obtain a purely categorical proof of the last result.

Known	Positive	Negative	Finite axiomatisation	Mundici's equiv. for comm. distr. <i>l</i> -monoids	Vietoris	Recap
000000	O	O		0000	00	●
Reca	р					

- The category of compact ordered spaces is dually equivalent to an (infinitary) variety.
- We have a finite equational axiomatisation (= finitely many operations and equational axioms).
- The employment of operations of infinite arity is necessary.
- En passant, we generalized Mundici's equivalence to unital distributive commutative *l*-monoids.
- The category of coalgebras for the Vietoris endofunctor on CompOrd is dually equivalent to an (infinitary) variety.

Thank you for your attention.

References I

Abbadini, M. and Reggio, L. (2020)

On the axiomatisability of the dual of compact ordered spaces.

Applied Categorical Structures, 28:921-934.

Duskin, J. (1969).

Variations on Beck's tripleability criterion.

In Mac Lane, S., editor, *Reports of the Midwest Category Seminar, III*, pages 74–129. Springer, Berlin.

Hofmann, D., Neves, R., and Nora, P. (2018).

Generating the algebraic theory of ${\cal C}(X) {:}$ the case of partially ordered compact spaces.

Theory Appl. Categ., 33:276–295.

Lieberman, M., Rosický, J., and Vasey, S. (2019). Hilbert spaces and C^* -algebras are not finitely concrete. Preprint available at arXiv:1908.10200.

References II

Mundici, D. (1986).

Interpretation of AF $C^{\ast}\mbox{-algebras}$ in Łukasiewicz sentential calculus.

J. Funct. Anal., 65(1):15-63.

Nachbin, L. (1948).

Sur les espaces topologiques ordonnés.

C. R. Acad. Sci. Paris, 226:381-382.

Priestley, H. A. (1970).

Representation of distributive lattices by means of ordered Stone spaces.

Bull. London Math. Soc., 2:186-190.

Stone, M. H. (1936).

The theory of representations for Boolean algebras.

Trans. Amer. Math. Soc., 40(1):37–111.