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Context: dualities



Dualities

Stone duality for Boolean Algebras (Stone, 1936)

Boolean algebras Boolean spaces

(Comp. Hausd. 0-dimensional)

Priestley duality (Priestley, 1970)

(Bounded) distributive lattices Priestley spaces

(Bool. space with a partial order

+ total order-disconnectedness)
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Dualities: above 0-dimensionality

Duality for compact Hausdorff spaces (Duskin, 1969)

A variety of (infinitary) algebras Compact Hausdorff spaces

Duality for compact ordered spaces

A variety of (possibly infinitary)

algebras?

(Yes)

Compact ordered spaces

2



Compact ordered spaces



Compact ordered space

Definition (Nachbin, 1965)
A compact ordered space is a compact Hausdorff space X , equipped with

a partial order ≤, which is closed in X × X with respect to the product

topology.

A morphism of compact ordered spaces is a continuous monotone map.

Example
[0, 1].

Example
[0, 1]κ.

Example
Y ⊆ [0, 1]κ, Y closed.

Every compact ordered space is isomorphic to a closed subspace of a

power of [0, 1].
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Comparison

Compact ordered space = closed subspace of a power of [0, 1].

Compact Hausdorff space = closed subspace of a power of [0, 1].

Priestley space = closed subspace of a power of {0, 1}.

Boolean space = closed subspace of a power of {0, 1}.
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The dual of compact ordered

spaces



The dual of compact ordered spaces

KH≤ := category of compact ordered spaces.

KH≤ is dually equivalent to a quasi-variety of (infinitary) algebras

(Hofmann, Neves and Nora, 2018).

Characterisation of quasi-varieties
A category C is equivalent to a quasi-variety of (possibly infinitary)

algebras if, and only if, C is locally small and

1. C is cocomplete;

2. C has a regular projective regular generator.

KH≤ is dually equivalent to a quasi-variety because it is locally small,

complete and it has a regular injective regular cogenerator: [0, 1].
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The dual of compact ordered spaces

Question (Hofmann, Neves, Nora, 2018)
Is the category of compact ordered spaces also dually equivalent to a

variety of (possibly infinitary) algebras?

Main result
The category of compact ordered spaces is dually equivalent to a variety

of infinitary algebras.

(It is necessary to resort to infinitary operations.)
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Recap

Comp. Hausd. 0-dim. Comp. Hausd.

Without order Boolean spaces Comp. Hausd. spaces

Dual: finitary variety Dual: infinitary variety

With order Priestley spaces Compact ordered spaces

Dual: finitary variety Dual: infinitary variety
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Dualities

Bool. sp. Priest. sp. Comp. Hausd. Comp. ord.

Dual Finit. var. Finit. var. Infin. var. Infin. var.

(Bool. alg.) (Distr. latt.)

κ-ary {0, 1}κ→{0, 1} {0, 1}κ→{0, 1} [0, 1]κ→[0, 1] [0, 1]κ→[0, 1]

terms cont. cont. monot. cont. cont. monot.

Gener. by {0, 1} {0, 1} [0, 1] [0, 1]

In the variety which is dual to compact ordered spaces:

Terms of arity κ: continuous monotone functions [0, 1]κ → [0, 1].

Axioms: the equations that hold in [0, 1].
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Sketch of proof of main result



Quasi-varieties and varieties

To be proven
The category of compact ordered spaces is dually equivalent to a variety

of (possibly infinitary) algebras.

It was already observed that KHop
≤ is equivalent to a quasi-variety.

What is missing to prove that KHop
≤ is a variety?

Theorem
A quasi-variety C is a variety if, and only if, every (internal) equivalence

relation of C is effective.
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Corelations

A relation on an object X in a given category is an (equivalence class of)

monomorphisms r : R � X × X .

A corelation on an object X is an epimorphism r : X + X � R.

We encode an epimorphism f : X � Y of compact ordered spaces

(=surjective morphism) internally of X , via

4f := {(x , y) ∈ X × X | f (x) ≤ f (y)},

which is a preorder on X which extends the partial order ≤ on X , and

which is closed in X × X .
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Corelations

A corelation r : X + X � R is encoded by the preorder 4r on X + X .

We rephrase the conditions of coreflexivity, cosymmetry, cotransitivity

and coeffectiveness as order-topological properties on 4r .

Proposition
If 4r encodes a coreflexive cosymmetric cotransitive corelation, 4r

encodes a coeffective corelation.

This proves that equivalence relations in KHop
≤ are effective, and thus

that the quasi-variety KHop
≤ is actually a variety.
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Negative results



Negative results

Theorem
The category of compact ordered spaces is not dually equivalent to any

variety of finitary algebras.

More generally:

Theorem
Let C be a full subcategory of KH≤, with C ⊇ Priestley. If the dual of C

is equivalent to a finitely accessible category, then C = Priestley.

Theorem (Suggested by Lieberman, Rosický and Vasey, 2019)
The category of compact ordered spaces is not dually equivalent to any

elementary class of structures.
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Conclusions



Conclusions

Main result
The opposite of the category of compact ordered spaces is equivalent to

a variety of infinitary algebras.

Sketch of the proof.
The category of compact ordered spaces satisfies:

1. Completeness.

2. Existence of a regular injecive regular cogenerator object ([0, 1]).

3. Coequivalence corelations are coeffective.

κ-ary terms: [0, 1]κ → [0, 1] continuous and monotone.

Axioms: the equations that hold in [0, 1].

It is necessary to resort to infinitary operations.
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Thank you for your attention!
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