Operations that preserve integrability, and truncated Riesz spaces

Marco Abbadini

Dipartimento di Matematica Federigo Enriques Università degli studi di Milano, Italy marco.abbadini@unimi.it

Talk based on M. Abbadini, *Operations that preserve integrability, and truncated Riesz spaces*, arXiv:1807.05533

BLAST 2018 University of Denver, Colorado, USA

OVERVIEW

Part I: Operations that preserve integrability

We characterize the operations under which the \mathcal{L}^1 spaces are closed. We exhibit a simple set of generating operations.

Part II: Truncated Riesz spaces

We investigate the equational laws satisfied by the operations of Part I. We obtain an explicit axiomatization of the infinitary variety generated by \mathcal{L}^1 spaces with these operations. We obtain a representation theorem for free objects in the variety.

OVERVIEW

Part I: Operations that preserve integrability

Part II: Truncated Riesz spaces

For $(\Omega, \mathcal{F}, \mu)$ a measure space, where we allow $\mu(\Omega) = \infty$, we say that a function $f: \Omega \to \mathbb{R}$ is *integrable* if it is \mathcal{F} -measurable and such that $\int_{\Omega} |f| \, d\mu < \infty$. Let us set

$$\mathcal{L}^1(\mu) = \{ f : \Omega \to \mathbb{R} \mid f \text{ is integrable} \}.$$

If $f, g \in \mathcal{L}^1(\mu)$, then

- $f + g \in \mathcal{L}^1(\mu);$
- ▶ $f \cdot g$ may fail to belong to $\mathcal{L}^1(\mu)$.

We say that $\mathcal{L}^1(\mu)$ is *closed under* the operation $+: \mathbb{R}^2 \to \mathbb{R}$, but may fail to be closed under the operation $\cdot: \mathbb{R}^2 \to \mathbb{R}$.

The notion for a general operation $\tau \colon \mathbb{R}^I \to \mathbb{R}$ is as follows.

For $(\Omega, \mathcal{F}, \mu)$ a measure space, where we allow $\mu(\Omega) = \infty$, we say that a function $f: \Omega \to \mathbb{R}$ is *integrable* if it is \mathcal{F} -measurable and such that $\int_{\Omega} |f| \, d\mu < \infty$. Let us set

$$\mathcal{L}^1(\mu) = \{ f : \Omega \to \mathbb{R} \mid f \text{ is integrable} \}.$$

If $f, g \in \mathcal{L}^1(\mu)$, then

- $f + g \in \mathcal{L}^1(\mu);$
- ▶ $f \cdot g$ may fail to belong to $\mathcal{L}^1(\mu)$.

We say that $\mathcal{L}^1(\mu)$ is *closed under* the operation $+: \mathbb{R}^2 \to \mathbb{R}$, but may fail to be closed under the operation $:: \mathbb{R}^2 \to \mathbb{R}$.

The notion for a general operation $\tau \colon \mathbb{R}^I \to \mathbb{R}$ is as follows.

For I a set and $\tau : \mathbb{R}^I \to \mathbb{R}$, we say $\mathcal{L}^1(\mu)$ is closed under τ if, for all $(f_i)_{i \in I} \subseteq \mathcal{L}^1(\mu)$, the function

$$\tau((f_i)_{i\in I})\colon \Omega \longrightarrow \mathbb{R}$$
$$\omega \in \Omega \longmapsto \tau((f_i(\omega))_{i\in I})$$

belongs to $\mathcal{L}^1(\mu)$. In such case, we also say τ *preserves integrability over* μ .

Examples of operations that preserve integrability over every measure

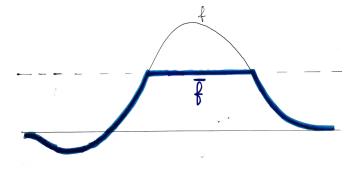
- 1. The binary addition $+: \mathbb{R}^2 \to \mathbb{R}$.
- 2. For $\lambda \in \mathbb{R}$, the multiplication $\lambda(\cdot) : \mathbb{R} \to \mathbb{R}$ by λ .
- 3. The element $0 \in \mathbb{R}$.
- 4. The binary sup $\vee \colon \mathbb{R}^2 \to \mathbb{R}$ and inf $\wedge \colon \mathbb{R}^2 \to \mathbb{R}$.

Examples of operations that preserve integrability over every measure

5. The unary operation

$$\overline{\cdot} \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \overline{x} \coloneqq x \wedge 1,$$

called truncation.

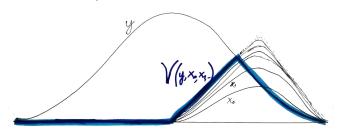


Examples of operations that preserve integrability over every measure

6. The operation of countably infinite arity $Y : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$:

$$\bigvee (y, x_0, x_1, x_2, \dots) \coloneqq \sup_{n \in \mathbb{N}} \{x_n \wedge y\},\,$$

called truncated supremum.



Question

Under which operations $\mathbb{R}^I \to \mathbb{R}$ are all \mathcal{L}^1 spaces closed? Equivalently, which operations preserve integrability over every measure?

Theorem

The operations that preserve integrability over every measure are exactly those obtained by composition from

$$+$$
, $\lambda(\cdot)$ (for each $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ and Υ .

There is an <u>explicit characterization</u> of the operations $\mathbb{R}^l \to \mathbb{R}$ that preserve integrability over every measure.

Finite Arity

 $\tau \colon \mathbb{R}^n \to \mathbb{R}$ preserves integrability over every measure if, and only if,

- 1. τ is Borel measurable, and
- 2. $\exists \lambda_0, \dots, \lambda_{n-1} \in \mathbb{R}$ such that, for every $x_0, \dots, x_{n-1} \in \mathbb{R}$, we have

$$|\tau(x_0,\ldots,x_{n-1})| \leq \lambda_0|x_0| + \cdots + \lambda_{n-1}|x_{n-1}|.$$

OVERVIEW

Part I: Operations that preserve integrability

Part II: Truncated Riesz spaces

Idea (R.N. Ball) For
$$f \in \mathcal{L}^1(\mu)$$
,
$$\bar{f} := f \land 1 \in \mathcal{L}^1(\mu),$$
 even if $1 \notin \mathcal{L}^1(\mu)$.

Therefore a "truncation" operation is defined even in the absence of a weak unit.

Definition

A *truncated Riesz space* is a Riesz space E that is endowed with a unary operation $\overline{\cdot}: E \to E$, called *truncation*, which has the following properties.

(T1) For all
$$f \in E$$
, $(\overline{f})^- = f^-$, and $(\overline{f})^+ = \overline{f^+}$.

- (T2) For all $f, g \in E^+$, we have $f \land \overline{g} \leqslant \overline{f} \leqslant f$.
- (T3) For all $f \in E^+$, if $\overline{f} = 0$, then f = 0.
- (T4) For all $f \in E^+$, if $nf = \overline{nf}$ for every $n \in \mathbb{N}$, then f = 0.

Based on R.N. Ball, *Truncated abelian lattice-ordered groups I: The pointed* (*Yosida*) *representation*, Topology Appl., 162, 2014, pp. 43–65.

We will see that the operations that preserve integrability are related to the *category of Dedekind \sigma-complete truncated Riesz spaces* (whose morphisms are the Riesz morphisms which preserve the existing countable suprema and the truncation).

Theorem

The category of Dedekind σ -complete truncated Riesz spaces is an infinitary variety of algebras.

Primitive operations:

- 1. Primitive operations of Riesz spaces: $+, \lambda(\cdot)$ (for each $\lambda \in \mathbb{R}$), $0, \vee, \wedge$.
- 2. Truncation $\overline{\cdot}$.
- 3. Operation of countably infinite arity γ :

$$\bigvee (y, x_0, x_1, x_2, \dots) := \sup_{n \in \mathbb{N}} \{x_n \wedge y\}.$$

Axioms:

Axioms of Riesz spaces + finitely many additional ones.

$$\left(\mathbb{R},\left\{+,\lambda(\ \cdot\)(\text{for each }\lambda\in\mathbb{R}),0,\vee,\wedge,\overline{\ \cdot\ },\Upsilon\right\}\right)$$

is a Dedekind σ -complete truncated Riesz space.

Theorem

The variety of Dedekind σ -complete truncated Riesz spaces is

$$\text{HSP}\left(\mathbb{R}, \left\{+, \lambda(\ \cdot\) (\textit{for each}\ \lambda \in \mathbb{R}), 0, \vee, \wedge, \overline{\ \cdot\ }, \Upsilon\right\}\right).$$

Sketch of proof.

Starting point: Loomis-Sikorski Theorem for Riesz spaces, i.e. embedding of an archimedean Riesz space into $\frac{\mathbb{R}^X}{\mathcal{I}}$, with all existing countable suprema preserved (e.g. G. Buskes, A. Van Rooij, *Representation of Riesz spaces without the Axiom of Choice*, Nepali Math. Sci. Rep., 16(1-2):19-22, 1997.).

We make an adaptation for truncated Riesz spaces.

Stronger result

Every quasi-equation with countably many premises that holds in \mathbb{R} holds in every Dedekind σ -complete truncated Riesz space.

Theorem

The variety of Dedekind σ -complete truncated Riesz spaces is

$$\text{HSP}\left(\mathbb{R}, \left\{+, \lambda(\ \cdot\) (\textit{for each}\ \lambda \in \mathbb{R}), 0, \vee, \wedge, \overline{\ \cdot\ }, \Upsilon\right\}\right).$$

Sketch of proof.

Starting point: Loomis-Sikorski Theorem for Riesz spaces, i.e. embedding of an archimedean Riesz space into $\frac{\mathbb{R}^X}{\mathcal{T}}$, with all existing countable suprema preserved (e.g. G. Buskes, A. Van Rooij, Representation of Riesz spaces without the Axiom of Choice, Nepali Math. Sci. Rep., 16(1-2):19-22, 1997.).

We make an adaptation for truncated Riesz spaces.

Stronger result

Every quasi-equation with countably many premises that holds in \mathbb{R} holds in every Dedekind σ -complete truncated Riesz space.

Corollary

The free Dedekind σ -complete truncated Riesz space is given by

 $\mathsf{Free}_I \coloneqq \{ \tau \colon \mathbb{R}^I \to \mathbb{R} \mid \tau \text{ preserves integrability over every measure} \}.$

Finite Arity

Free_n = {
$$\tau : \mathbb{R}^n \to \mathbb{R} \mid \tau$$
 is Borel measurable, $\exists \lambda_0, \dots, \lambda_{n-1} \in \mathbb{R} : \forall x_0, \dots, x_{n-1} \in \mathbb{R} \mid \tau(x_0, \dots, x_{n-1}) \mid \leq \lambda_0 |x_0| + \dots + \lambda_{n-1} |x_{n-1}|$ }.

FINITE MEASURES AND WEAK UNITS

We have obtained analogous results in the case that μ is a finite measure (i.e. $\mu(\Omega) < \infty$).

If μ is finite, the constant function 1 belongs to, and is a weak unit of, $\mathcal{L}^1(\mu)$.

Theorem

The operations that preserve integrability over every finite measure are exactly those obtained by composition from

$$+$$
, $\lambda(\cdot)$ (for each $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \Upsilon$ and 1 .

Corresponding (infinitary) variety: Dedekind σ -complete Riesz spaces with weak unit. Representation of free objects.

FINITE MEASURES AND WEAK UNITS

We have obtained analogous results in the case that μ is a finite measure (i.e. $\mu(\Omega) < \infty$).

If μ is finite, the constant function 1 belongs to, and is a weak unit of, $\mathcal{L}^1(\mu)$.

Theorem

The operations that preserve integrability over every finite measure are exactly those obtained by composition from

$$+$$
, $\lambda(\cdot)$ (for each $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \Upsilon$ and 1 .

Corresponding (infinitary) variety: Dedekind σ -complete Riesz spaces with weak unit. Representation of free objects.

FINITE MEASURES AND WEAK UNITS

We have obtained analogous results in the case that μ is a finite measure (i.e. $\mu(\Omega) < \infty$).

If μ is finite, the constant function 1 belongs to, and is a weak unit of, $\mathcal{L}^1(\mu)$.

Theorem

The operations that preserve integrability over every finite measure are exactly those obtained by composition from

$$+$$
, $\lambda(\cdot)$ (for each $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \Upsilon$ and 1 .

Corresponding (infinitary) variety: Dedekind σ -complete Riesz spaces with weak unit. Representation of free objects.

FURTHER RESEARCH:

From measurability to integration (with V. Marra)

We consider the operator

$$\int \colon \mathcal{L}^1(\mu) \longrightarrow \mathbb{R}$$
$$f \longmapsto \int f \, \mathrm{d}\mu \in \mathbb{R}$$

as an operation of a 2-sorted variety.

(Inspired by the work of T. Kroupa and V. Marra, who studied this idea in the case of finite additivity, instead of σ -additivity.)

The first sort has the axioms of Dedekind σ -complete truncated Riesz spaces. Second sort? Axiomatization? Generating objects? Free objects?

FURTHER RESEARCH:

From measurability to integration (with V. Marra)

We consider the operator

$$\int \colon \mathcal{L}^1(\mu) \longrightarrow \mathbb{R}$$
$$f \longmapsto \int f \, \mathrm{d}\mu \in \mathbb{R}$$

as an operation of a 2-sorted variety.

(Inspired by the work of T. Kroupa and V. Marra, who studied this idea in the case of finite additivity, instead of σ -additivity.)

The first sort has the axioms of Dedekind σ -complete truncated Riesz spaces. Second sort? Axiomatization? Generating objects? Free objects?

Thank you for your attention.