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Mundici’s equivalence

Mundici: the category of unital Abelian lattice-ordered groups is
equivalent to the category of MV-algebras.

This establishes a bridge between
C(X,R) :={f: X — R continuous}

and
C<(X,[0,1]) = {f: X — [0, 1] continuous}

where X is a compact space.



Algebras of continuous monotone functions

We want to establish a bridge between
C<(X,R) = {f: X — R continuous and monotone}
and
C<(X,[0,1]) = {f: X — [0, 1] continuous and monotone}

where X is a compact space, endowed with a partial order.



Unital /-monoids



Unital /-monoids

Definition
A (totally distributive commutative) £-monoid is an algebra

(M; +,V, A, 0) such that:

M1. (M;V,A) is a distributive lattice;

M2. (M;+,0) is a commutative monoid;

M3. -+ distributes over VV and A.

A unital £-monoid is an algebra (M;+,V,A,0,1, —1) such that
(M; +,V, A,0) is an ¢-monoid and

Ul. -1<0<1;

u2. (-1)+1=0;

U3. For all x € M, there exists n € N such that n(—1) < x < nl.



Examples of unital /-monoids

Example
R is a unital /-monoid.

Example
Z is a unital /-monoid.

Example
Given a compact space X with a partial order (e.g. X = [a, b] C R),

C<(X,R) = {f: X — R continuous and monotone},

C<(X,Z) = {f: X — Z continuous and monotone}

are unital /~-monoids.

Example
—
ZxN={k+ne|keZ,ne{0,1,2,...}} is a unital {~-monoid.

Example
{k—ne|keZ,ne{0,1,2,...}} is a unital {-monoid.



Subdirectly irreducible /-monoids

Theorem (Fuchs, unpublished; Merlier, 1971; Repnitzkii, 1984)
Every subdirectly irreducible ¢-monoid is totally ordered.

Every subdirectly irreducible unital /-monoid is totally ordered. Every
unital /~-monoid is isomorphic to a subalgebra of a product of nontrivial
totally ordered unital /-monoids.

For a nontrivial totally ordered unital /-monoid M, there exists a unique
homomorphism ¢: M — R. This homomorphism “kills the
infinitesimals” .



Representation

Let M be a unital /-monoid. Set
Max(M) := hom(M,R).

Max(M) can be endowed with a certain topology and a certain partial

order.

Definition (Nachbin, 1965)
A compact ordered space is a compact Hausdorff space X with a partial

order < which is closed in X x X.
Max(M) is a compact ordered space.
We obtain a homomorphism
ev: M — C<(Max(M),R)

X —> evy 1 o = p(x).

This homomorphism “kills the infinitesimals”.



MMV-algebras



The unit interval of a unital /-monoid

Given a unital ¢-monoid M we set
T(M)={xeM|0<x<1}.
We endow (M) with the following operations:

o xBy = (x+y)AL
e xOy=(x+y—-1)VO0;
e V is defined by restriction;
e A is defined by restriction;

0e (M),
1em(M).



MMV-algebras

Definition

We call MMV-algebra (for Monoidal MV-algebra) an algebra
(A;®,©,V,A,0,1) such that

Al. (A;V,A,0,1) is a bounded distributive lattice;

A2. (A;®,0) and (A; ®,1) are commutative monoids;

A3. xdl=1and x®0=0;

A4. the operations & and © distribute over V and A;

A5, [(x@y) 021 @ (xOy) = [(x O y) @ 2] © (x B y);

A6. [(xdy)oz]® (xOy)=[(x®2)0y]® (x© 2);

AT. (x@y)oz={[(x®y)02]® (xOy)} Az

A8. xoy)dz={[(x®y)oz]® (xOy)} V=

In [0,1] (with x @y == min{x + y,1}, x ©y = max{x +y — 1,0}):
[(x @) © 21 ® (x 0 y) = {[(x+y+2VIA -1 = [(x 0 y) 8 2] © (x D y). s



MMV-algebras

MMV-algebras form a finitely axiomatised variety of finitary algebras!




Examples of MMV-algebras

Example
[0,1] is an MMV-algebra.

Example ~
Given a unital f-monoid M, (T(M); ®,®,V, A,0,1) is an MMV-algebra.
(And every MMV-algebra is of this form.)

Example
Given a topological space X with a partial order (e.g. X = [a, b] C R),

C<(X,[0,1]) := {f: X = [0,1] cont. and mon.} = [(C<(X,R))

is an MMV-algebra.

Example
{0,1} =T(Z) is an MMV-algebra (& =V and ® = A).

Example
Every bounded distributive lattice L is an MMV-algebra, by setting
®=Vand ® =A. L~T(C<(Spec(L),Z)).
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The equivalence




Main result: equivalence

Theorem (Main result)
The category of unital £-monoids is equivalent to the category of

MMV-algebras.
MMV-algebras Unital £-monoids
Pro Finitely axiomatised variety Handy operations and
of finitary algebras. axioms.
Con | Unwieldy operations and axioms. | Not first-order definable.
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The unit interval functor r

Given a unital /~-monoid M,

(F(M); &, ®, V,A,0,1)

is an MMV-algebra.

T defines a functor from unital £-monoids to MMV-algebras.

12



A quasi-inverse of r

We sketch the construction of a quasi-inverse for r.

Idea
An element f of a unital /~-monoid M is determined by the function

m(F): Z — T(M)
n— [(fvn)A(n+1)] —n.
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Good Z-sequences

Definition
A good Z-sequence in A is a function x: Z — A such that

1. definitely for k — —oo we have x(k) = 1;
2. definitely for k — 400 we have x(k) = 0;
3. for all k € Z, we have

We set =(A) as the set of good Z-sequences in A.
=(A) is a unital ¢-monoid.

= is a functor from MMV-algebras to unital /-monoids.
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Good Z-sequences give quasi-inverse.

Proposition
I and = are quasi-inverses.

Theorem (Main result)
The category of unital {-monoids is equivalent to the category of

MMV-algebras.

Classical Mundici's equivalence is a consequence.
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The dual of compact ordered
spaces




Stone duality

Stone spaces Boolean algebras
(Comp. Hausd. 0-dimensional) V,A,0,1, .

Priestley duality

Priestley spaces Bounded distributive lattices
(Stone space with a partial order V, A,0, 1.
+ totally order-disconnectedness)
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Dualities: above 0-dimensionality

Duality for compact Hausdorff spaces

Compact Hausdorff spaces MV-algebras + . ..
@D, O, V,A, 0,1, —, ...

Duality for compact ordered spaces

Compact ordered spaces MMV-algebras + . ..
(Compact Hausdorff space ®,6,V,A,0,1,....

with a closed partial order)

Theorem
The category of compact ordered spaces is dually equivalent to a variety

of infinitary algebras.

We present one such variety MMV, using the signature
{®,®,V,A}U[0,1] U {}, where § has countable arity.
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The axioms for the variety

An algebra A belongs to MMV, if

(A;®,©,V,A\,0,1) is an MMV-algebra;

for a, B € [0,1] s.t. a < B in [0,1] we have o < B4;

for o, 8,7 € [0,1] s.t. a @ B =7 in [0,1], we have o? @ A = A,
for a, 8,7 € [0,1] s.t. « ® B = in [0,1], we have o? ® A = +4;
(X, X, X, ...) = x;

6(m(x, ), m2(x, ¥), 3(x,y), . ) = X;

7.0 pa(xt, ..., %) © y%l < O(x1, %2, X3y -+ ) < pp(Xty -y Xn) B 2%1

S A A

where

XxOX=x0(1=X) (for X €]0,1]).

Ta(X,y) = <y\/ (X@;”)) A <x€921n).

P1(X1) = X1,

Pn(X1s ooy Xn) = Tono1(pn—1(X1y . -, Xn—1), Xn) (for n > 2). 18



Conclusions




Conclusions

Main result
The category of unital £-monoids is equivalent to the category of

MMV-algebras.
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Future work




1. Facts:

al. (R;+,V,A,0) does not generate the variety of /~-monoids.

a2. The variety generated by (R;+,V, A,0) is not finitely axiomatised.

a3. A countable equational axiomatisation for the variety generated by
(R; 4, V, A, 0) is known.

To do:

bl. Prove that ([0,1]; ®,®, V, A,0,1) does not generate the variety of
MMV -algebras.

b2. Prove that the variety generated by ([0,1]; ®,®, V, A,0,1) is not
finitely axiomatised.

b3. Provide a countable equational axiomatisation for the variety
generated by ([0, 1]; ®,®, V, A, 0, 1).
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2. Fact:
The class of {+,V, A, 0}-subreducts of Abelian lattice-ordered
groups is axiomatised by the equations defining /-monoids together
with the cancellation law:

X+z=y+z=—x=y.

To do:

Prove that the class of {®, ®,V, A, 0, 1}-subreducts of MV-algebras
is axiomatised by the equations defining MMV-algebras together
with the single quasi-equation

fx@z=y@®zand xOz=y Oz, then x =y.
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Thank you for your attention!
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