Equivalence à la Mundici for lattice-ordered monoids

Marco Abbadini

Nonclassical Logic Seminar, 8 May 2020

Università degli Studi di Milano

Mundici: the category of unital Abelian lattice-ordered groups is equivalent to the category of MV-algebras.

This establishes a bridge between

$$\mathcal{C}(X,\mathbb{R}) \coloneqq \{f \colon X o \mathbb{R} \text{ continuous}\}$$

and

$$C_{\leq}(X, [0, 1]) \coloneqq \{f \colon X \to [0, 1] \text{ continuous}\}$$

where X is a compact space.

We want to establish a bridge between

 $C_{\leq}(X,\mathbb{R}) \coloneqq \{f \colon X \to \mathbb{R} \text{ continuous and monotone}\}$

and

 $C_{\leq}(X, [0, 1]) \coloneqq \{f \colon X \to [0, 1] \text{ continuous and monotone}\}$

where X is a compact space, endowed with a partial order.

Unital ℓ -monoids

Definition

A (totally distributive commutative) ℓ -monoid is an algebra $\langle M; +, \lor, \land, 0 \rangle$ such that:

M1. $\langle M; \lor, \land \rangle$ is a distributive lattice;

M2. $\langle M; +, 0 \rangle$ is a commutative monoid;

M3. + distributes over \lor and \land .

A unital ℓ -monoid is an algebra $\langle M; +, \vee, \wedge, 0, 1, -1 \rangle$ such that $\langle M; +, \vee, \wedge, 0 \rangle$ is an ℓ -monoid and

U1. $-1 \le 0 \le 1;$

U2. (-1) + 1 = 0;

U3. For all $x \in M$, there exists $n \in \mathbb{N}$ such that $n(-1) \leq x \leq n1$.

Examples of unital *l*-monoids

Example \mathbb{R} is a unital ℓ -monoid.

Example \mathbb{Z} is a unital ℓ -monoid.

Example

Given a compact space X with a partial order (e.g. $X = [a, b] \subseteq \mathbb{R}$),

$$\begin{split} & \mathcal{C}_{\leq}(X,\mathbb{R}) \coloneqq \{f \colon X \to \mathbb{R} \text{ continuous and monotone}\}, \\ & \mathcal{C}_{\leq}(X,\mathbb{Z}) \coloneqq \{f \colon X \to \mathbb{Z} \text{ continuous and monotone}\} \end{split}$$

are unital ℓ -monoids.

Example

 $\mathbb{Z} \stackrel{\rightarrow}{\times} \mathbb{N} = \{k + n\varepsilon \mid k \in \mathbb{Z}, n \in \{0, 1, 2, ...\}\}$ is a unital ℓ -monoid.

Example

 $\{k - n\varepsilon \mid k \in \mathbb{Z}, n \in \{0, 1, 2, \dots\}\}$ is a unital ℓ -monoid.

Theorem (Fuchs, unpublished; Merlier, 1971; Repnitzkii, 1984) *Every subdirectly irreducible* ℓ *-monoid is totally ordered.*

Every subdirectly irreducible unital ℓ -monoid is totally ordered. Every unital ℓ -monoid is isomorphic to a subalgebra of a product of nontrivial totally ordered unital ℓ -monoids.

For a nontrivial totally ordered unital ℓ -monoid M, there exists a unique homomorphism $\varphi \colon M \to \mathbb{R}$. This homomorphism "kills the infinitesimals".

Let M be a unital ℓ -monoid. Set

 $Max(M) := hom(M, \mathbb{R}).$

Max(M) can be endowed with a certain topology and a certain partial order.

Definition (Nachbin, 1965)

A compact ordered space is a compact Hausdorff space X with a partial order \leq which is closed in $X \times X$.

Max(M) is a compact ordered space.

We obtain a homomorphism

 $ev: M \longrightarrow C_{\leq}(Max(M), \mathbb{R})$ $x \longmapsto ev_{x}: \varphi \mapsto \varphi(x).$

This homomorphism "kills the infinitesimals".

MMV-algebras

Given a unital ℓ -monoid M we set

$$\widetilde{\Gamma}(M) \coloneqq \{ x \in M \mid 0 \le x \le 1 \}.$$

We endow $\widetilde{\Gamma}(M)$ with the following operations:

- $x \oplus y := (x + y) \wedge 1;$
- $x \odot y \coloneqq (x + y 1) \lor 0;$
- \lor is defined by restriction;
- \wedge is defined by restriction;
- $0 \in \widetilde{\Gamma}(M);$
- $1 \in \widetilde{\Gamma}(M)$.

MMV-algebras

Definition

We call *MMV-algebra* (for *Monoidal MV-algebra*) an algebra $\langle A; \oplus, \odot, \lor, \land, 0, 1 \rangle$ such that

- A1. $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice;
- A2. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids;
- A3. $x \oplus 1 = 1$ and $x \odot 0 = 0$;
- A4. the operations \oplus and \odot distribute over \lor and \land ;
- A5. $[(x \oplus y) \odot z] \oplus (x \odot y) = [(x \odot y) \oplus z] \odot (x \oplus y);$
- A6. $[(x \oplus y) \odot z] \oplus (x \odot y) = [(x \oplus z) \odot y] \oplus (x \odot z);$
- A7. $(x \oplus y) \odot z = \{ [(x \oplus y) \odot z] \oplus (x \odot y) \} \land z;$
- A8. $(x \odot y) \oplus z = \{ [(x \oplus y) \odot z] \oplus (x \odot y) \} \lor z.$

In [0,1] (with $x \oplus y \coloneqq \min\{x+y,1\}, x \odot y \coloneqq \max\{x+y-1,0\}$): $[(x \oplus y) \odot z] \oplus (x \odot y) = \{[(x+y+z) \lor 1] \land 2\} - 1 = [(x \odot y) \oplus z] \odot (x \oplus y).$ MMV-algebras form a finitely axiomatised variety of finitary algebras!

Example

[0,1] is an MMV-algebra.

Example

Given a unital ℓ -monoid M, $\langle \widetilde{\Gamma}(M); \oplus, \odot, \lor, \land, 0, 1 \rangle$ is an MMV-algebra. (And every MMV-algebra is of this form.)

Example

Given a topological space X with a partial order (e.g. $X = [a, b] \subseteq \mathbb{R}$),

 $C_{\leq}(X,[0,1]) \coloneqq \{f \colon X \to [0,1] \text{ cont. and mon.}\} = \widetilde{\Gamma}(C_{\leq}(X,\mathbb{R}))$

is an MMV-algebra.

Example

 $\{0,1\} = \widetilde{\Gamma}(\mathbb{Z})$ is an MMV-algebra $(\oplus = \lor \text{ and } \odot = \land).$

Example

Every bounded distributive lattice *L* is an MMV-algebra, by setting $\oplus := \lor$ and $\odot := \land$. $L \simeq \widetilde{\Gamma}(C_{\leq}(Spec(L), \mathbb{Z})).$

The equivalence

Theorem (Main result) The category of unital ℓ -monoids is equivalent to the category of MMV-algebras.

	MMV-algebras	Unital ℓ-monoids
Pro	Finitely axiomatised variety	Handy operations and
	of finitary algebras.	axioms.
Con	Unwieldy operations and axioms.	Not first-order definable.

Given a unital ℓ -monoid M,

$$\langle \widetilde{\Gamma}(M); \oplus, \odot, \lor, \land, 0, 1 \rangle$$

is an MMV-algebra.

 $\widetilde{\Gamma}$ defines a functor from unital $\ell\text{-monoids}$ to MMV-algebras.

A quasi-inverse of $\widetilde{\Gamma}$

We sketch the construction of a quasi-inverse for $\widetilde{\Gamma}.$

Idea

An element f of a unital ℓ -monoid M is determined by the function

$$\eta_M(f) \colon \mathbb{Z} \to \widetilde{\Gamma}(M)$$

 $n \mapsto [(f \lor n) \land (n+1)] - n.$

Definition

A good \mathbb{Z} -sequence in A is a function $x \colon \mathbb{Z} \to A$ such that

- 1. definitely for $k \to -\infty$ we have x(k) = 1;
- 2. definitely for $k \to +\infty$ we have x(k) = 0;
- 3. for all $k \in \mathbb{Z}$, we have

$$\begin{aligned} \mathsf{x}(k) \oplus \mathsf{x}(k+1) &= \mathsf{x}(k); \\ \mathsf{x}(k) \odot \mathsf{x}(k+1) &= \mathsf{x}(k+1). \end{aligned}$$

We set $\widetilde{\Xi}(A)$ as the set of good \mathbb{Z} -sequences in A. $\widetilde{\Xi}(A)$ is a unital ℓ -monoid. $\widetilde{\Xi}$ is a functor from MMV-algebras to unital ℓ -monoids.

Proposition $\widetilde{\Gamma}$ and $\widetilde{\Xi}$ are quasi-inverses.

Theorem (Main result) The category of unital ℓ -monoids is equivalent to the category of MMV-algebras.

Classical Mundici's equivalence is a consequence.

The dual of compact ordered spaces

Stone duality

Stone spaces (Comp. Hausd. 0-dimensional) Boolean algebras $\lor, \land, 0, 1, \neg.$

Priestley duality

Priestley spaces (Stone space with a partial order + totally order-disconnectedness) Bounded distributive lattices $\lor, \land, 0, 1.$

Duality for compact Hausdorff spaces

Compact Hausdorff spaces

 $\begin{array}{l} \textit{MV-algebras} + \dots \\ \oplus, \odot, \lor, \land, 0, 1, \neg, \dots \end{array}$

Duality for compact ordered spaces

Compact ordered spaces (Compact Hausdorff space with a closed partial order)

 $\begin{array}{l} \textit{MMV-algebras} + \ldots \\ \oplus, \odot, \lor, \land, 0, 1, \ldots \end{array}$

Theorem

The category of compact ordered spaces is dually equivalent to a variety of infinitary algebras.

We present one such variety MMV_{∞} using the signature $\{\oplus, \odot, \lor, \land\} \cup [0, 1] \cup \{\delta\}$, where δ has countable arity.

The axioms for the variety

An algebra A belongs to MMV_∞ if

1. $\langle A; \oplus, \odot, \lor, \land, 0, 1 \rangle$ is an MMV-algebra;

2. for $\alpha, \beta \in [0, 1]$ s.t. $\alpha \leq \beta$ in [0, 1] we have $\alpha^A \leq \beta^A$;

3. for $\alpha, \beta, \gamma \in [0, 1]$ s.t. $\alpha \oplus \beta = \gamma$ in [0, 1], we have $\alpha^A \oplus \beta^A = \gamma^A$;

4. for $\alpha, \beta, \gamma \in [0, 1]$ s.t. $\alpha \odot \beta = \gamma$ in [0, 1], we have $\alpha^A \odot \beta^A = \gamma^A$; 5. $\delta(x, x, x, \dots) = x$;

6.
$$\delta(\tau_1(x, y), \tau_2(x, y), \tau_3(x, y), \dots) = x;$$

7. $\forall n: \rho_n(x_1, \dots, x_n) \ominus \frac{1}{2^{n-1}} \le \delta(x_1, x_2, x_3, \dots) \le \rho_n(x_1, \dots, x_n) \oplus \frac{1}{2^{n-1}}$

where

ρ

$$\begin{aligned} x \ominus \lambda &\coloneqq x \odot (1 - \lambda) \quad (\text{for } \lambda \in [0, 1]). \\ \tau_n(x, y) &\coloneqq \left(y \lor \left(x \ominus \frac{1}{2^n} \right) \right) \land \left(x \oplus \frac{1}{2^n} \right). \\ \rho_1(x_1) &\coloneqq x_1; \\ {}_n(x_1, \dots, x_n) &\coloneqq \tau_{n-1}(\rho_{n-1}(x_1, \dots, x_{n-1}), x_n) \quad (\text{for } n \ge 2). \end{aligned}$$

Conclusions

Main result The category of unital l-monoids is equivalent to the category of MMV-algebras.

Future work

Future work

1. Facts:

- a1. $\langle \mathbb{R};+,\vee,\wedge,0\rangle$ does not generate the variety of $\ell\text{-monoids}.$
- a2. The variety generated by $\langle \mathbb{R}; +, \vee, \wedge, 0 \rangle$ is not finitely axiomatised.
- a3. A countable equational axiomatisation for the variety generated by $\langle \mathbb{R};+,\vee,\wedge,0\rangle \text{ is known}.$

To do:

- b1. Prove that $\langle [0,1];\oplus,\odot,\vee,\wedge,0,1\rangle$ does not generate the variety of MMV-algebras.
- b2. Prove that the variety generated by $\langle [0,1];\oplus,\odot,\vee,\wedge,0,1\rangle$ is not finitely axiomatised.
- b3. Provide a countable equational axiomatisation for the variety generated by $\langle [0,1]; \oplus, \odot, \lor, \land, 0, 1 \rangle$.

2. Fact:

The class of $\{+,\vee,\wedge,0\}$ -subreducts of Abelian lattice-ordered groups is axiomatised by the equations defining ℓ -monoids together with the cancellation law:

$$x + z = y + z \Longrightarrow x = y.$$

To do:

Prove that the class of $\{\oplus,\odot,\vee,\wedge,0,1\}$ -subreducts of MV-algebras is axiomatised by the equations defining MMV-algebras together with the single quasi-equation

If
$$x \oplus z = y \oplus z$$
 and $x \odot z = y \odot z$, then $x = y$.

Thank you for your attention!