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Mundici’s equivalence

Mundici: the category of unital Abelian lattice-ordered groups is

equivalent to the category of MV-algebras.

This establishes a bridge between

C (X ,R) := {f : X → R continuous}

and

C≤(X , [0, 1]) := {f : X → [0, 1] continuous}

where X is a compact space.
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Algebras of continuous monotone functions

We want to establish a bridge between

C≤(X ,R) := {f : X → R continuous and monotone}

and

C≤(X , [0, 1]) := {f : X → [0, 1] continuous and monotone}

where X is a compact space, endowed with a partial order.
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Unital `-monoids



Unital `-monoids

Definition
A (totally distributive commutative) `-monoid is an algebra

〈M; +,∨,∧, 0〉 such that:

M1. 〈M;∨,∧〉 is a distributive lattice;

M2. 〈M; +, 0〉 is a commutative monoid;

M3. + distributes over ∨ and ∧.

A unital `-monoid is an algebra 〈M; +,∨,∧, 0, 1,−1〉 such that

〈M; +,∨,∧, 0〉 is an `-monoid and

U1. −1 ≤ 0 ≤ 1;

U2. (−1) + 1 = 0;

U3. For all x ∈ M, there exists n ∈ N such that n(−1) ≤ x ≤ n1.
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Examples of unital `-monoids

Example
R is a unital `-monoid.

Example
Z is a unital `-monoid.

Example
Given a compact space X with a partial order (e.g. X = [a, b] ⊆ R),

C≤(X ,R) := {f : X → R continuous and monotone},
C≤(X ,Z) := {f : X → Z continuous and monotone}

are unital `-monoids.

Example

Z
→
× N = {k + nε | k ∈ Z, n ∈ {0, 1, 2, . . . }} is a unital `-monoid.

Example
{k − nε | k ∈ Z, n ∈ {0, 1, 2, . . . }} is a unital `-monoid.
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Subdirectly irreducible `-monoids

Theorem (Fuchs, unpublished; Merlier, 1971; Repnitzkii, 1984)
Every subdirectly irreducible `-monoid is totally ordered.

Every subdirectly irreducible unital `-monoid is totally ordered. Every

unital `-monoid is isomorphic to a subalgebra of a product of nontrivial

totally ordered unital `-monoids.

For a nontrivial totally ordered unital `-monoid M, there exists a unique

homomorphism ϕ : M → R. This homomorphism “kills the

infinitesimals”.
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Representation

Let M be a unital `-monoid. Set

Max(M) := hom(M,R).

Max(M) can be endowed with a certain topology and a certain partial

order.

Definition (Nachbin, 1965)
A compact ordered space is a compact Hausdorff space X with a partial

order ≤ which is closed in X × X .

Max(M) is a compact ordered space.

We obtain a homomorphism

ev : M −→ C≤(Max(M),R)

x 7−→ evx : ϕ 7→ ϕ(x).

This homomorphism “kills the infinitesimals”.
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MMV-algebras



The unit interval of a unital `-monoid

Given a unital `-monoid M we set

Γ̃(M) := {x ∈ M | 0 ≤ x ≤ 1}.

We endow Γ̃(M) with the following operations:

� x ⊕ y := (x + y) ∧ 1;

� x � y := (x + y − 1) ∨ 0;

� ∨ is defined by restriction;

� ∧ is defined by restriction;

� 0 ∈ Γ̃(M);

� 1 ∈ Γ̃(M).
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MMV-algebras

Definition

We call MMV-algebra (for Monoidal MV-algebra) an algebra

〈A;⊕,�,∨,∧, 0, 1〉 such that

A1. 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice;

A2. 〈A;⊕, 0〉 and 〈A;�, 1〉 are commutative monoids;

A3. x ⊕ 1 = 1 and x � 0 = 0;

A4. the operations ⊕ and � distribute over ∨ and ∧;

A5. [(x ⊕ y)� z ]⊕ (x � y) = [(x � y)⊕ z ]� (x ⊕ y);

A6. [(x ⊕ y)� z ]⊕ (x � y) = [(x ⊕ z)� y ]⊕ (x � z);

A7. (x ⊕ y)� z = {[(x ⊕ y)� z ]⊕ (x � y)} ∧ z ;

A8. (x � y)⊕ z = {[(x ⊕ y)� z ]⊕ (x � y)} ∨ z .

In [0, 1] (with x ⊕ y := min{x + y , 1}, x � y := max{x + y − 1, 0}):

[(x ⊕ y)� z ]⊕ (x � y) = {[(x+y+z)∨1]∧2}−1 = [(x � y)⊕ z ]� (x ⊕ y). 8



MMV-algebras

MMV-algebras form a finitely axiomatised variety of finitary algebras!
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Examples of MMV-algebras

Example
[0, 1] is an MMV-algebra.

Example
Given a unital `-monoid M, 〈Γ̃(M);⊕,�,∨,∧, 0, 1〉 is an MMV-algebra.

(And every MMV-algebra is of this form.)

Example
Given a topological space X with a partial order (e.g. X = [a, b] ⊆ R),

C≤(X , [0, 1]) := {f : X → [0, 1] cont. and mon.} = Γ̃(C≤(X ,R))

is an MMV-algebra.

Example
{0, 1} = Γ̃(Z) is an MMV-algebra (⊕ = ∨ and � = ∧).

Example
Every bounded distributive lattice L is an MMV-algebra, by setting

⊕ := ∨ and � := ∧. L ' Γ̃(C≤(Spec(L),Z)).
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The equivalence



Main result: equivalence

Theorem (Main result)
The category of unital `-monoids is equivalent to the category of

MMV-algebras.

MMV-algebras Unital `-monoids

Pro Finitely axiomatised variety Handy operations and

of finitary algebras. axioms.

Con Unwieldy operations and axioms. Not first-order definable.
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The unit interval functor Γ̃

Given a unital `-monoid M,

〈Γ̃(M);⊕,�,∨,∧, 0, 1〉

is an MMV-algebra.

Γ̃ defines a functor from unital `-monoids to MMV-algebras.
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A quasi-inverse of Γ̃

We sketch the construction of a quasi-inverse for Γ̃.

Idea
An element f of a unital `-monoid M is determined by the function

ηM(f ) : Z→ Γ̃(M)

n 7→ [(f ∨ n) ∧ (n + 1)]− n.

13



Good Z-sequences

Definition
A good Z-sequence in A is a function x: Z→ A such that

1. definitely for k → −∞ we have x(k) = 1;

2. definitely for k → +∞ we have x(k) = 0;

3. for all k ∈ Z, we have

x(k)⊕ x(k + 1) = x(k);

x(k)� x(k + 1) = x(k + 1).

We set Ξ̃(A) as the set of good Z-sequences in A.

Ξ̃(A) is a unital `-monoid.

Ξ̃ is a functor from MMV-algebras to unital `-monoids.
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Good Z-sequences give quasi-inverse.

Proposition
Γ̃ and Ξ̃ are quasi-inverses.

Theorem (Main result)
The category of unital `-monoids is equivalent to the category of

MMV-algebras.

Classical Mundici’s equivalence is a consequence.
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The dual of compact ordered

spaces



Dualities

Stone duality

Stone spaces

(Comp. Hausd. 0-dimensional)

Boolean algebras

∨,∧, 0, 1,¬.

Priestley duality

Priestley spaces

(Stone space with a partial order

+ totally order-disconnectedness)

Bounded distributive lattices

∨,∧, 0, 1.
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Dualities: above 0-dimensionality

Duality for compact Hausdorff spaces

Compact Hausdorff spaces MV-algebras + . . .

⊕,�,∨,∧, 0, 1,¬, . . . .

Duality for compact ordered spaces

Compact ordered spaces

(Compact Hausdorff space

with a closed partial order)

MMV-algebras + . . .

⊕,�,∨,∧, 0, 1, . . . .

Theorem
The category of compact ordered spaces is dually equivalent to a variety

of infinitary algebras.

We present one such variety MMV∞ using the signature

{⊕,�,∨,∧} ∪ [0, 1] ∪ {δ}, where δ has countable arity.
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The axioms for the variety

An algebra A belongs to MMV∞ if

1. 〈A;⊕,�,∨,∧, 0, 1〉 is an MMV-algebra;

2. for α, β ∈ [0, 1] s.t. α ≤ β in [0, 1] we have αA ≤ βA;

3. for α, β, γ ∈ [0, 1] s.t. α⊕ β = γ in [0, 1], we have αA ⊕ βA = γA;

4. for α, β, γ ∈ [0, 1] s.t. α� β = γ in [0, 1], we have αA � βA = γA;

5. δ(x , x , x , . . . ) = x ;

6. δ(τ1(x , y), τ2(x , y), τ3(x , y), . . . ) = x ;

7. ∀n: ρn(x1, . . . , xn)	 1
2n−1 ≤ δ(x1, x2, x3, . . . ) ≤ ρn(x1, . . . , xn)⊕ 1

2n−1 ,

where

x 	 λ := x � (1− λ) (for λ ∈ [0, 1]).

τn(x , y) :=

(
y ∨

(
x 	 1

2n

))
∧
(
x ⊕ 1

2n

)
.

ρ1(x1) := x1;

ρn(x1, . . . , xn) := τn−1(ρn−1(x1, . . . , xn−1), xn) (for n ≥ 2). 18
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Conclusions

Main result
The category of unital `-monoids is equivalent to the category of

MMV-algebras.
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Future work



Future work

1. Facts:

a1. 〈R; +,∨,∧, 0〉 does not generate the variety of `-monoids.

a2. The variety generated by 〈R; +,∨,∧, 0〉 is not finitely axiomatised.

a3. A countable equational axiomatisation for the variety generated by

〈R; +,∨,∧, 0〉 is known.

To do:

b1. Prove that 〈[0, 1];⊕,�,∨,∧, 0, 1〉 does not generate the variety of

MMV-algebras.

b2. Prove that the variety generated by 〈[0, 1];⊕,�,∨,∧, 0, 1〉 is not

finitely axiomatised.

b3. Provide a countable equational axiomatisation for the variety

generated by 〈[0, 1];⊕,�,∨,∧, 0, 1〉.
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Future work

2. Fact:

The class of {+,∨,∧, 0}-subreducts of Abelian lattice-ordered

groups is axiomatised by the equations defining `-monoids together

with the cancellation law:

x + z = y + z =⇒ x = y .

To do:

Prove that the class of {⊕,�,∨,∧, 0, 1}-subreducts of MV-algebras

is axiomatised by the equations defining MMV-algebras together

with the single quasi-equation

If x ⊕ z = y ⊕ z and x � z = y � z , then x = y .
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Thank you for your attention!
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