On the Axiomatisability of the Dual of Compact Ordered Spaces

Marco Abbadini

Supervisor: Prof. Vincenzo Marra

Università degli Studi di Milano

9 April 2021

Marco Abbadini

On the Axiomatisability of the Dual of Compact Ordered Spaces

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for <i>l</i> -monoids	Vietoris
•00000	00000000		O	0000	O

Compact ordered spaces

Compact ordered spaces: introduced by L. Nachbin in 1948 as an ordered version of compact Hausdorff spaces.

Definition ([Nachbin, 1948])

A *compact ordered space* is a compact space X with a partial order \leq which is closed in $X \times X$.

CompOrd: category of compact ordered spaces and order-preserving continuous maps.

Examples

- [0,1] with Euclidean topology and \leq .
- Compact Hausdorff space with identity relation.
- Priestley space.
- Closed subspace of a power of $([0, 1], \leq)$.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
0●0000	00000000		O	0000	O

Ordered-topological structures

Compact ordered spaces : compact Hausdorff spaces

= Priestley spaces : Stone spaces.

Known results 00●000	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O
Dualitie	s with variet	ies			

 $\stackrel{\mathsf{op}}{\longleftrightarrow}$ Stone variety of finitary algebras [Stone, 1936] $\stackrel{\mathsf{op}}{\longleftrightarrow}$ Priestlev variety of finitary algebras [Priestley, 1970] $\mathsf{CompHaus} \quad \stackrel{\mathsf{op}}{\longleftrightarrow}$ variety of (infinitary) algebras [Duskin, 1969] , op ∖ CompOrd ???

Open guestion [Hofmann, Neves and Nora, 2018]

Is the category of compact ordered spaces dually equivalent to a variety of (possibly infinitary) algebras?

Known results 000●00	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O

Known dualities for compact ordered spaces

CompOrd is known to be dually equivalent to the categories of:

- 1. stably compact frames;
- 2. strong proximity lattices.

However, neither of the two is a variety of algebras.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
0000€0	00000000		O	0000	O

CompOrd^{op} is a quasivariety

As observed by [Hofmann, Neves and Nora, 2018], CompOrd is dually equivalent to a *quasivariety* of (possibly infinitary) algebras: this follows from

- 1. results of [Nachbin, 1965], and
- 2. categorical characterisations of quasivarieties.

Function symbols of arity a cardinal κ : order-preserving continuous functions $[0,1]^{\kappa} \rightarrow [0,1]$. They have obvious interpretations on [0,1].

Full, faithful, essentially surjective contravariant functor

 $\begin{array}{l} \mathsf{CompOrd} \xrightarrow[]{\mathsf{op}} & \mathbb{SP}([0,1]) \\ & \sim \\ & X \longmapsto \{f \colon X \to [0,1] \mid f \text{ is order-pres. and cont.} \}. \end{array}$

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ -monoids	Vietoris
00000●	00000000		O	0000	O

Results known from the literature

Theorem ([Hofmann, Neves and Nora, 2018])

CompOrd *is dually equivalent to an* \aleph_1 *-ary quasivariety.*

 $(\aleph_1$ -ary *quasi*variety: function symbols of at most countable arity, implications with at most countably many premises.)

Known results 000000	CompOrd ^{op} is a variety ●0000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O
CompOr	rd ^{op} is a varie	ety			

Main result:

The category of compact ordered spaces is dually equivalent to a variety of algebras, with operations of at most countable arity.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
000000	0000000		O	0000	O
Nogati	vo roculto				

Negative results

Theorem

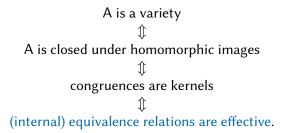
CompOrd is <u>not</u> dually equivalent to any variety of <u>finitary</u> algebras. In fact, CompOrd is <u>not</u> dually equivalent to

- any finitely accessible category (the same holds for any full subcategory of CompOrd which strictly contains Priestley);
- any first-order definable class of structures (no faithful functor CompOrd^{op} → Set preserves directed colimits) [Lieberman, Rosický and Vasey, 2019];
- 3. *any class of finitary algebras closed under products and subalgebras.*

Known results	CompOrd ^{op} is a variety 0000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O
Proofo	f main result				

Known: CompOrd^{op} is (equivalent to) a quasivariety (SP([0,1])). Is this quasivariety also a variety?

Known: for a quasivariety A,



We shall prove that equivalence relations in CompOrd^{op} are effective.

Marco Abbadini

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O

Effectiveness of equivalence relations

Every equivalence relation in CompHaus^{op} is effective: proof of 12 lines in [Barr and Wells, 1985].

However, this proof does not work for CompOrd^{op}. \rightarrow The addition of the order complicates the proof.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ -monoids	Vietoris
000000	00000000		O	0000	O

Binary relations and their duals

Binary relation on X in CompOrd^{op} \uparrow Equiv. class of monomorphism $R \hookrightarrow X \times X$ in CompOrd^{op} \uparrow Equiv. class of epimorphism $X + X \twoheadrightarrow R$ in CompOrd \uparrow Closed preorder on X + X which extends \leq_{X+X}

We characterise the notions of reflexivity, symmetry, transitivity and effectiveness at this last level.

Known results 000000	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O

Effectiveness

Theorem

Every equivalence relation in CompOrd^{op} is effective.

Corollary (Main result)

The category of compact ordered spaces is dually equivalent to a variety of algebras, with operations of at most countable arity.

Known results 000000	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 0000	Vietoris O
The vari	ety				

Algebraic theory (in the sense of Lawvere-Linton) of CompOrd^{op}: Objects: (possibly infinite) powers of [0, 1]. Morphisms: order-preserving continuous functions.

A variety dually equivalent to CompOrd is

 $\mathbb{SP}([0,1]),$

where the function symbols of arity κ are the order-preserving continuous functions $[0,1]^{\kappa} \rightarrow [0,1]$. (Any such function depends on at most countably many coordinates.)

Any algebra in $\mathbb{SP}([0,1])$ is isomorphic to

 $\{f \colon X \to [0,1] \mid f \text{ is order-pres. and cont.} \}$

for a unique compact ordered space X.

Marco Abbadini

Known results 000000	CompOrd ^{op} is a variety 0000000●	Finite axiomatisation	Recap O	Mundici's theorem for <i>l</i> -monoids 0000	Vietoris O
Barr-exa	actness				

CompOrd^{op} is Barr-exact. Then, so are the categories of strong proximity lattices and of stably compact frames.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
000000	00000000	•00	O	0000	O

Finite equational axiomatisation

Does there exist a manageable axiomatisation of CompOrd^{op}?

CompOrd^{op} admits a finite equational axiomatisation, i.e. one which uses only finitely many function symbols and finitely many equational axioms.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
000000	00000000	○●○	O	0000	O

Primitive operations

Primitive operations: \oplus , \odot , \lor , \land , 0, 1, h, j, λ (arities: 2, 2, 2, 2, 0, 0, 1, 1, ω).

,

$$x \oplus y \coloneqq \min\{x + y, 1\},$$

$$x \odot y \coloneqq \max\{x + y - 1, 0\},$$

$$x \lor y \coloneqq \max\{x, y\},$$

$$x \land y \coloneqq \min\{x, y\},$$

$$0 \coloneqq 0,$$

$$1 \coloneqq 1,$$

$$h(x) \coloneqq \frac{x}{2},$$

$$j(x) \coloneqq \frac{1}{2} + \frac{x}{2}.$$

The operations generated by \oplus , \odot , \lor , \land , 0, 1, h, j approximate any order-preserving continuous function $[0, 1]^{\kappa} \rightarrow [0, 1]$.

Marco Abbadini

Known results 000000	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for <i>l</i> -monoids 0000	Vietoris O
T I I'					

The limit-like operation

$$\lambda(x_1, x_2, x_3, \dots) \coloneqq \lim_{n \to \infty} \mu_n(x_1, \dots, x_n),$$

where μ_n is defined inductively:

$$\mu_1(x_1) \coloneqq x_1,$$

$$\mu_n(x_1, \dots, x_n) \coloneqq \max \left\{ \min \left\{ x_n, \mu_{n-1}(x_1, \dots, x_{n-1}) + \frac{1}{2^n} \right\},$$

$$\mu_{n-1}(x_1, \dots, x_{n-1}) - \frac{1}{2^{n-1}} \right\}.$$

For 'sufficiently many' sequences (x_1, x_2, x_3, \dots) , we have

$$\lambda(x_1, x_2, x_3, \dots) = \lim_{n \to \infty} x_n.$$

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
000000	00000000		●	0000	O
Recap					

Negative results: CompOrd is not dually equivalent to

- any finitely accessible category;
- any first-order definable class of structures;
- any class of finitary algebras closed under products and subalgebras.

In particular, CompOrd is <u>not</u> dually equivalent to any variety of finitary algebras.

Positive results: CompOrd is dually equivalent to a variety of algebras described by

- finitely many function symbols of at most countable arity, and
- finitely many equational axioms.

Known results	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids ●000	Vietoris O

Generalisation of Mundici's theorem

En passant, in the search for a reasonable set of axioms for \oplus , \odot , \lor , \land , 0, 1, a generalisation of a theorem by D. Mundici was obtained.

Mundici's theorem [Mundici, 1986]: the categories of unital Abelian ℓ -groups and of MV-algebras are equivalent.

Generalisation: The category of unital commutative distributive ℓ -monoids is equivalent to the category of MV-monoidal algebras.

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ-monoids	Vietoris
000000	00000000		O	○●○○	O

Lattice-ordered monoids

Definition

Unital commutative distributive ℓ -monoid: $\langle M; +, \lor, \land, 0, 1, -1 \rangle$ s.t.

- 1. $\langle M; \lor, \land \rangle$ is a distributive lattice.
- 2. $\langle M; +, 0 \rangle$ is a commutative monoid.
- 3. The operation + distributes over \lor and \land .
- 4. $-1 \le 0 \le 1$. 5. -1 + 1 = 0. 6. $\forall x \in M, \exists n \in \mathbb{N} \text{ s.t. } n(-1) \le x \le n1$.

Example

For X a compact ordered space,

 $\{f \colon X \to \mathbb{R} \mid f \text{ is order-preserving and continuous}\}.$

Known results 000000	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids 00●0	Vietoris O
Unit inte	erval functor				

Given a unital commutative distributive $\ell\text{-monoid}\ M,$ one equips the set

$$\Gamma(M) \coloneqq \{ x \in M \mid 0 \le x \le 1 \}$$

with the operations \lor , \land , 0, and 1 by restriction, and

$$\begin{aligned} x \oplus y &\coloneqq (x+y) \land 1, \\ x \odot y &\coloneqq (x+y-1) \lor 0. \end{aligned}$$

Example

 $\Gamma(\{\text{order-pres. cont. } X \to \mathbb{R}\}) = \{\text{order-pres. cont. } X \to [0, 1]\}.$

 $\langle \Gamma(M); \oplus, \odot, \lor, \land, 0, 1 \rangle$ completely captures M.

Known results 000000	CompOrd ^{op} is a variety 00000000	Finite axiomatisation	Recap O	Mundici's theorem for ℓ-monoids	Vietoris O
A 4 1 /					

MV-monoidal algebras

Definition

MV-monoidal algebra: $\langle A; \oplus, \odot, \lor, \land, 0, 1 \rangle$ s.t.

- 1. $\langle A; \vee, \wedge \rangle$ is a distributive lattice.
- 2. $\langle A;\oplus,0\rangle$ and $\langle A;\odot,1\rangle$ are commutative monoids.
- 3. Both the operations \oplus and \odot distribute over both \lor and $\land.$
- 4. $(x \oplus y) \odot ((x \odot y) \oplus z) = (x \odot (y \oplus z)) \oplus (y \odot z).$
- 5. $(x \odot y) \oplus z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \lor z$.

6. $(x \oplus y) \odot z = ((x \odot y) \oplus ((x \oplus y) \odot z)) \land z.$

Theorem

The categories of unital commutative distributive ℓ -monoids and of *MV*-monoidal algebras (with homomorphisms) are equivalent.

This gives us a reasonable set of axioms for $\oplus,\odot,\lor,\land,0,1.$

Marco Abbadini

On the Axiomatisability of the Dual of Compact Ordered Spaces

Known results	CompOrd ^{op} is a variety	Finite axiomatisation	Recap	Mundici's theorem for ℓ -monoids	Vietoris
000000	00000000		O	0000	•
Vietoris	functor				

We have a 'Vietoris' endofunctor V: CompOrd \rightarrow CompOrd (see [Schalk, 1993, Hofmann and Nora, 2018]).

Theorem ([Hofmann, Neves and Nora, 2018])

The category of coalgebras for V: CompOrd \rightarrow CompOrd is dually equivalent to an \aleph_1 -ary quasivariety.

Theorem

The category of coalgebras for V: CompOrd \rightarrow CompOrd is dually equivalent to a variety, with operations of at most countable arity.

Thank you for your attention.

References I

Banaschewski, B. (1983).

On categories of algebras equivalent to a variety.

Algebra Universalis, 16(2):264-267.

Bankston, P. (1982).

Some obstacles to duality in topological algebra.

Canadian J. Math., 34(1):80-90.

Barr, M. and Wells, C. (1985).

Toposes, triples and theories.

Springer-Verlag New York.

Republished in: Repr. Theory Appl. Categ., 12:1-288 (2005).

Duskin, J. (1969).

Variations on Beck's tripleability criterion.

In Mac Lane, S., editor, *Reports of the Midwest Category Seminar*, *III*, pages 74–129. Springer, Berlin.

References II

Gabriel, P. and Ulmer, F. (1971). *Lokal präsentierbare Kategorien*, volume 221 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin-New York.

Hofmann, D., Neves, R., and Nora, P. (2018). Generating the algebraic theory of C(X): the case of partially ordered compact spaces.

Theory Appl. Categ., 33:276-295.

Hofmann, D. and Nora, P. (2018). Enriched Stone-type dualities.

Advances in Mathematics, 330:307-360.

Lieberman, M., Rosický, J., and Vasey, S. (2019).
 Hilbert spaces and C*-algebras are not finitely concrete.
 Preprint available at arXiv:1908.10200.

References III

Marra, V. and Reggio, L. (2017).

Stone duality above dimension zero: axiomatising the algebraic theory of $\mathrm{C}(X).$

Adv. Math., 307:253-287.

Mundici, D. (1986).

Interpretation of AF $C^{\ast}\mbox{-algebras}$ in Łukasiewicz sentential calculus.

J. Funct. Anal., 65(1):15–63.

Nachbin, L. (1948).

Sur les espaces topologiques ordonnés.

C. R. Acad. Sci. Paris, 226:381-382.

Nachbin, L. (1965).

Topology and order, volume 4 of Van Nostrand Mathematical Studies.

D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London.

Translated from the Portuguese by Lulu Bechtolsheim.

References IV

Priestley, H. A. (1970).

Representation of distributive lattices by means of ordered Stone spaces.

Bull. London Math. Soc., 2:186-190.

Schalk, A. (1993).

Algebras for generalized power constructions.

Darmstadt: TH Darmstadt.

Stone, M. H. (1936).

The theory of representations for Boolean algebras.

Trans. Amer. Math. Soc., 40(1):37-111.