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Known results CompOrdop is a variety Finite axiomatisation Recap Mundici’s theorem for `-monoids Vietoris

Compact ordered spaces

Compact ordered spaces: introduced by L. Nachbin in 1948 as an
ordered version of compact Hausdor� spaces.

Definition ([Nachbin, 1948])
A compact ordered space is a compact space X with a partial order ≤
which is closed in X ×X .

CompOrd: category of compact ordered spaces and
order-preserving continuous maps.

Examples

I [0, 1] with Euclidean topology and ≤.
I Compact Hausdor� space with identity relation.
I Priestley space.
I Closed subspace of a power of ([0, 1],≤).
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Ordered-topological structures

Compact ordered spaces : compact Hausdor� spaces

= Priestley spaces : Stone spaces.
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Dualities with varieties

Stone
op←→ variety of finitary algebras [Stone, 1936]

Priestley
op←→ variety of finitary algebras [Priestley, 1970]

CompHaus
op←→ variety of (infinitary) algebras [Duskin, 1969]

CompOrd
op←→ �?

Open question [Hofmann, Neves and Nora, 2018]

Is the category of compact ordered spaces dually equivalent to a
variety of (possibly infinitary) algebras?

Marco Abbadini On the Axiomatisability of the Dual of Compact Ordered Spaces 3 / 23



Known results CompOrdop is a variety Finite axiomatisation Recap Mundici’s theorem for `-monoids Vietoris

Known dualities for compact ordered spaces

CompOrd is known to be dually equivalent to the categories of:

1. stably compact frames;

2. strong proximity la�ices.

However, neither of the two is a variety of algebras.
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CompOrdop is a quasivariety

As observed by [Hofmann, Neves and Nora, 2018], CompOrd is
dually equivalent to a quasivariety of (possibly infinitary) algebras:
this follows from

1. results of [Nachbin, 1965], and

2. categorical characterisations of quasivarieties.

Function symbols of arity a cardinal κ: order-preserving continuous
functions [0, 1]κ → [0, 1]. They have obvious interpretations on
[0, 1].

Full, faithful, essentially surjective contravariant functor

CompOrd
op−→
∼

SP([0, 1])

X 7−→ {f : X → [0, 1] | f is order-pres. and cont.}.
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Results known from the literature

Theorem ([Hofmann, Neves and Nora, 2018])
CompOrd is dually equivalent to an ℵ1-ary quasivariety.

(ℵ1-ary quasivariety: function symbols of at most countable arity,
implications with at most countably many premises.)
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CompOrdop is a variety

Main result:
The category of compact ordered spaces is dually equivalent to a
variety of algebras, with operations of at most countable arity.

Marco Abbadini On the Axiomatisability of the Dual of Compact Ordered Spaces 7 / 23



Known results CompOrdop is a variety Finite axiomatisation Recap Mundici’s theorem for `-monoids Vietoris

Negative results

Theorem
CompOrd is not dually equivalent to any variety of finitary algebras.
In fact, CompOrd is not dually equivalent to

1. any finitely accessible category (the same holds for any full
subcategory of CompOrd which strictly contains Priestley);

2. any first-order definable class of structures (no faithful functor
CompOrdop → Set preserves directed colimits)
[Lieberman, Rosický and Vasey, 2019];

3. any class of finitary algebras closed under products and
subalgebras.
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Proof of main result

Known: CompOrdop is (equivalent to) a quasivariety (SP([0, 1])). Is
this quasivariety also a variety?

Known: for a quasivariety A,

A is a variety
m

A is closed under homomorphic images
m

congruences are kernels
m

(internal) equivalence relations are e�ective.

We shall prove that equivalence relations in CompOrdop are
e�ective.
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E�ectiveness of equivalence relations

Every equivalence relation in CompHausop is e�ective: proof of 12
lines in [Barr and Wells, 1985].

However, this proof does not work for CompOrdop.
→ The addition of the order complicates the proof.
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Binary relations and their duals

Binary relation on X in CompOrdop

l
Equiv. class of monomorphism R ↪→ X ×X in CompOrdop

l
Equiv. class of epimorphism X +X � R in CompOrd

l
Closed preorder on X +X which extends ≤X+X

We characterise the notions of reflexivity, symmetry, transitivity
and e�ectiveness at this last level.
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E�ectiveness

Theorem
Every equivalence relation in CompOrdop is e�ective.

Corollary (Main result)

The category of compact ordered spaces is dually equivalent to a
variety of algebras, with operations of at most countable arity.
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The variety

Algebraic theory (in the sense of Lawvere-Linton) of CompOrdop:
Objects: (possibly infinite) powers of [0, 1].

Morphisms: order-preserving continuous functions.

A variety dually equivalent to CompOrd is

SP([0, 1]),

where the function symbols of arity κ are the order-preserving
continuous functions [0, 1]κ → [0, 1]. (Any such function depends
on at most countably many coordinates.)

Any algebra in SP([0, 1]) is isomorphic to

{f : X → [0, 1] | f is order-pres. and cont.}

for a unique compact ordered space X .
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Barr-exactness

CompOrdop is Barr-exact. Then, so are the categories of strong
proximity la�ices and of stably compact frames.
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Finite equational axiomatisation

Does there exist a manageable axiomatisation of CompOrdop?

CompOrdop admits a finite equational axiomatisation, i.e. one
which uses only finitely many function symbols and finitely many
equational axioms.
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Primitive operations

Primitive operations: ⊕, �, ∨, ∧, 0, 1, h, j, λ (arities: 2, 2, 2, 2, 0, 0, 1,
1, ω).

x⊕ y := min{x+ y, 1},
x� y := max{x+ y − 1, 0},
x ∨ y := max{x, y},
x ∧ y := min{x, y},

0 := 0,

1 := 1,

h(x) :=
x

2
,

j(x) :=
1

2
+
x

2
.

The operations generated by ⊕, �, ∨, ∧, 0, 1, h, j approximate any
order-preserving continuous function [0, 1]κ → [0, 1].
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The limit-like operation

λ(x1, x2, x3, . . . ) := lim
n→∞

µn(x1, . . . , xn),

where µn is defined inductively:

µ1(x1) := x1,

µn(x1, . . . , xn) := max

{
min

{
xn, µn−1(x1, . . . , xn−1) +

1

2n

}
,

µn−1(x1, . . . , xn−1)−
1

2n−1

}
.

For ‘su�iciently many’ sequences (x1, x2, x3, . . . ), we have

λ(x1, x2, x3, . . . ) = lim
n→∞

xn.
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Recap

Negative results: CompOrd is not dually equivalent to
I any finitely accessible category;
I any first-order definable class of structures;
I any class of finitary algebras closed under

products and subalgebras.
In particular, CompOrd is not dually equivalent to any
variety of finitary algebras.

Positive results: CompOrd is dually equivalent to a variety of
algebras described by
I finitely many function symbols of at most

countable arity, and
I finitely many equational axioms.
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Generalisation of Mundici’s theorem

En passant, in the search for a reasonable set of axioms for ⊕, �, ∨,
∧, 0, 1, a generalisation of a theorem by D. Mundici was obtained.

Mundici’s theorem [Mundici, 1986]: the categories of unital Abelian
`-groups and of MV-algebras are equivalent.

Generalisation: The category of unital commutative distributive
`-monoids is equivalent to the category of MV-monoidal algebras.
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La�ice-ordered monoids

Definition
Unital commutative distributive `-monoid: 〈M ; +,∨,∧, 0, 1,−1〉 s.t.

1. 〈M ;∨,∧〉 is a distributive la�ice.

2. 〈M ; +, 0〉 is a commutative monoid.

3. The operation + distributes over ∨ and ∧.

4. −1 ≤ 0 ≤ 1.

5. −1 + 1 = 0.

6. ∀x ∈M , ∃n ∈ N s.t. n(−1) ≤ x ≤ n1.

Example
For X a compact ordered space,

{f : X → R | f is order-preserving and continuous}.
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Unit interval functor

Given a unital commutative distributive `-monoid M , one equips
the set

Γ(M) := {x ∈M | 0 ≤ x ≤ 1}

with the operations ∨, ∧, 0, and 1 by restriction, and

x⊕ y := (x+ y) ∧ 1,

x� y := (x+ y − 1) ∨ 0.

Example
Γ({order-pres. cont. X → R}) = {order-pres. cont. X → [0, 1]}.

〈Γ(M);⊕,�,∨,∧, 0, 1〉 completely captures M .
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MV-monoidal algebras

Definition
MV-monoidal algebra: 〈A;⊕,�,∨,∧, 0, 1〉 s.t.

1. 〈A;∨,∧〉 is a distributive la�ice.

2. 〈A;⊕, 0〉 and 〈A;�, 1〉 are commutative monoids.

3. Both the operations ⊕ and � distribute over both ∨ and ∧.

4. (x⊕ y)� ((x� y)⊕ z) = (x� (y ⊕ z))⊕ (y � z).

5. (x� y)⊕ z = ((x⊕ y)� ((x� y)⊕ z)) ∨ z.

6. (x⊕ y)� z = ((x� y)⊕ ((x⊕ y)� z)) ∧ z.

Theorem
The categories of unital commutative distributive `-monoids and of
MV-monoidal algebras (with homomorphisms) are equivalent.

This gives us a reasonable set of axioms for ⊕, �, ∨, ∧, 0, 1.
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Vietoris functor

We have a ‘Vietoris’ endofunctor V : CompOrd→ CompOrd (see
[Schalk, 1993, Hofmann and Nora, 2018]).

Theorem ([Hofmann, Neves and Nora, 2018])
The category of coalgebras for V : CompOrd→ CompOrd is dually
equivalent to an ℵ1-ary quasivariety.

Theorem
The category of coalgebras for V : CompOrd→ CompOrd is dually
equivalent to a variety, with operations of at most countable arity.

Thank you for your a�ention.
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