The dual of compact ordered spaces is a variety

Marco Abbadini Dipartimento di Matematica *Federigo Enriques* Università degli studi di Milano, Italy marco.abbadini@unimi.it

> Prague February 6, 2019

Definition

A *compact pospace* (X, \leq) is a compact topological space X, endowed with a partial order \leq , so that the set

$$\{(x,y)\in X\times X\mid x\leqslant y\}$$

is closed in $X \times X$ with respect to the product topology.

Example. [0, 1].

Representation of compact pospaces

For any set I, endow $[0,1]^I$ with the product topology and product order:

for
$$p, q \in [0, 1]^I$$
, $p \leq q \Leftrightarrow \forall i \in I \ p_i \leq q_i$.

Compact pospaces = closed subspaces of $[0, 1]^I$ (for some set *I*).

PosComp: category of compact pospaces with monotone continuous maps.

[Monotonicity: $x \leq y \Rightarrow f(x) \leq f(y)$.]

In *Generating the algebraic theory of* C(X): *the case of partially ordered compact spaces* (2018), Hofmann, Neves and Nora proved the following.

PosComp^{op} *is equivalent to a quasi-variety.*

That means, there is a set τ of function symbols and a set of quasi-equations

$$\left(\bigwedge_i \sigma_i = \rho_i\right) \Rightarrow \gamma = \eta$$

such that PosComp^{op} is equivalent to the category of τ -algebras satisfying the given quasi-equations.

[Such quasi-variety is not finitary: one of the primitive function symbols has countably infinite arity.]

In the same paper, they left as open the following question. Question Is PosComp^{op} equivalent to a variety?

That means, is there a set τ of function symbols and a set of equations

 $\gamma = \eta$

such that PosComp^{op} is equivalent to the category of τ -algebras satisfying the given equations?

Theorem (Main result) *The dual of* PosComp *is equivalent to a variety.*

Rest of the talk: sketch of the proof.

We provide

- a set of finitary function symbols, and a single function symbol δ of countably infinite arity,
- ► a set of equations,

such that PosComp^{op} is equivalent to the category of algebras satisfying the given equations.

Strategy

- 1. Dual adjunction between PosComp and a finitary variety
 - \mathcal{V} , to be defined. Contravariant functors:
 - $C\colon \text{PosComp} \to \mathcal{V},$
 - $Max: \mathcal{V} \to \text{PosComp.}$
- 2. Fixed objects:
 - ► in PosComp: every object.
 - ▶ in *V*: archimedean Cauchy complete *V*-algebras.
 - \Rightarrow duality between PosComp and archimedean Cauchy complete $\mathcal{V}\text{-}algebras.$
- 3. The variety \mathcal{V}_{δ} .

Subcategory of archimedean Cauchy complete V-algebras

 \cong

(infinitary) variety \mathcal{V}_{δ} .

1. DUAL ADJUNCTION

Let *X* be a compact pospace.

 $C(X) \coloneqq \{f : X \to [0,1] \mid f \text{ is continuous and monotone}\}.$

Which internal operations can we define on C(X)?

Example: for $f, g \in C(X)$, the function $f \lor g$ belongs to C(X), where $f \lor g$ is the pointwise application to f and g of the binary supremum $\lor : [0, 1]^2 \to [0, 1]$.

Proposition

Let I be a set, and let $\tau: [0,1]^I \to [0,1]$ be a continuous monotone function. Then, for X a compact pospace, C(X) is closed under τ (pointwise applied), i.e.,

 $\forall (f_i)_{i \in I} \subseteq C(X) \text{ we have } x \mapsto \tau((f_i(x))_{i \in I}) \in C(X).$

Idea: the terms of the variety \mathcal{V}_{δ} dual to PosComp "are" the monotone continuous functions $\tau \colon [0,1]^I \to [0,1]$.

We shall obtain every monotone continuous function $[0,1]^I \rightarrow [0,1]$ via composition of the following ones.

- 1. $a \lor b \coloneqq \max\{a, b\}$.
- 2. $a \wedge b \coloneqq \min\{a, b\}$.
- 3. $a \oplus b \coloneqq \min\{a+b, 1\}$.
- 4. $a \odot b \coloneqq \max\{a + b 1, 0\}$.
- 5. Each constant $\lambda \in [0, 1]$.
- 6. A function $\delta \colon [0,1]^{\mathbb{N}} \to [0,1]$, to be defined.

The variety \mathcal{V} .

A \mathcal{V} -algebra is a set A, endowed with internal operations $\{\lor, \land, \oplus, \odot\} \cup \{\lambda \mid \lambda \in [0, 1]\}$ such that:

- 1. $(A, \lor, \land, 0, 1)$ is a distributive bounded lattice;
- 2. $(A, \oplus, 0)$ is commutative monoid with absorbing element 1;
- 3. $(A, \odot, 1)$ is commutative monoid with absorbing element 0;
- 4. \oplus and \odot distributes over \lor and \land ;

5.
$$(a \oplus b) \odot c \leq a \oplus (b \odot c);$$

- 6. For each $\lambda \in [0,1]$, $a \leq (a \odot (1 \lambda)) \oplus \lambda$;
- 7. For each $\lambda \in [0, 1]$, $a \ge (a \oplus \lambda) \odot (1 \lambda)$;
- 8. For every $n, m \in \{0, 1, 2, ...\}$, we have the axiom $a \land (b \oplus (c \odot \lambda) \oplus \cdots \oplus (c \odot \lambda)) \leq$

$$(a \odot \underbrace{(c \oplus \lambda) \odot \cdots \odot (c \oplus \lambda)}_{p \to \infty}) \lor b;$$

m times

9. $\{\lor, \land, \oplus, \odot\}$ operate on the constant symbols $\lambda \in [0, 1]$ as their intended interpretation in [0, 1] do.

[0,1] is a \mathcal{V} -algebra (and a compact pospace).

For X compact pospace,

 $C(X) = \{f : X \to [0,1] \mid f \text{ is continuous and monotone}\}$

is a V-algebra, with pointwise applied operations.

 $C \colon \text{PosComp} \to \mathcal{V}.$

For $A \in \mathcal{V}$, set $Max(A) \coloneqq \hom_{\mathcal{V}}(A, [0, 1]).$

Topology on Max(A): the smallest one to which belong, for every $a \in A$ and O open subset of [0, 1], $\{x \in Max(A) \mid x(a) \in O\}$.

Order on Max(A): $x \leq y$ if, and only if, for all $a \in A$, $x(a) \leq y(a)$.

Theorem For $A \in \mathcal{V}$, Max(A) is a compact pospace.

Proof (L. Reggio).

Sketch: $Max(A) = \hom_{\mathcal{V}}(A, [0, 1]) \subseteq [0, 1]^A$. Given the definition of Max(A), and the fact that $[0, 1]^A$ is a compact pospace with respect to the product topology and the pointwise order, it is enough to prove that Max(A) is a closed subset of $[0, 1]^A$. The idea is that Max(A) is closed because it is defined via equations, that express the preservation of the primitive function symbols.

Contravariant functors: *C*: PosComp $\rightarrow V$, *Max*: $V \rightarrow$ PosComp.

They are (dually) adjoint.

For $X \in \text{PosComp}$, the unit is

$$ev_X \colon X \to Max(C(X))$$

 $x \mapsto (ev_x \colon C(X) \to [0,1]; a \mapsto a(x))$

For $A \in \mathcal{V}$, the unit is

$$ev_A \colon A \to C(Max(A))$$

 $a \mapsto (ev_a \colon Max(A) \to [0,1]; x \mapsto x(a)).$

2. Fixed objects

2a. Fixed objects in PosComp

Theorem *For every X compact pospace, the unit* ev_X *is an isomorphism.*

2b. Fixed objects in \mathcal{V} Let *A* be a \mathcal{V} -algebra. For $a, b \in \mathcal{V}$, set

d(a,b)

as the maximum between

$$\mathbf{d}^{\uparrow}(a,b) \coloneqq \inf\{\lambda \in [0,1] \mid b \leqslant a \oplus \lambda\},\$$

and

$$\mathbf{d}^{\uparrow}(b,a) = \inf\{\lambda \in [0,1] \mid a \leqslant b \oplus \lambda\}.$$

When $A \subseteq [0, 1]^X$, d coincides with the sup metric.

1. $d(a,b) \ge 0$. 2. d(a,b) = d(b,a). 3. $d(a,c) \le d(a,b) + d(b,c)$. 4. d(a,a) = 0. 5. $d(a,b) = 0 \Rightarrow a = b$???

Definition $A \in \mathcal{V}$ is called *archimedean* if, for all $a, b \in A$,

$$\mathbf{d}(a,b)=0 \Rightarrow a=b.$$

Theorem

Let $A \in \mathcal{V}$ *. The following conditions are equivalent.*

- 1. *A is archimedean.*
- 2. For every $x, y \in A$ with $x \neq y$, there exists a \mathcal{V} -morphism $\varphi \colon A \to [0, 1]$ such that $\varphi(x) \neq \varphi(y)$.
- 3. There exists a set X such that A is a V-subalgebra of $[0, 1]^X$.
- 4. The unit $ev_A : A \to C(Max(A))$ is injective.

To prove $[1,\Rightarrow2.]$ we make use of the Subdirect Representation Theorem, which applies since \mathcal{V} has only finitary terms. Which property of *A* is missing in order to have an isomorphism $A \cong C(Max(A))$? Cauchy completeness.

Definition

Let $A \in \mathcal{V}$.

 $\forall \varepsilon > 0, \exists n \in \mathbb{N}: \forall m \ge n, \mathbf{d}(a_m, a) < \varepsilon.$

- (*a_n*)_{n∈ℕ} ⊆ A converges if there is *a* ∈ A such that (*a_n*)_{n∈ℕ} converges to *a*.
- A is Cauchy complete if every Cauchy sequence in A converges.

Theorem

A \mathcal{V} -algebra *A* is Cauchy complete if, and only if, the unit $ev_A : A \to C(Max(A))$ is surjective.

Theorem

Let $A \in \mathcal{V}$ *. The following conditions are equivalent.*

- 1. The unit $ev_A : A \to C(Max(A))$ is an isomorphism.
- 2. There exists X compact pospace such that A and C(X) are isomorphic V-algebras.
- 3. *A is archimedean and Cauchy complete.*

3. The variety \mathcal{V}_{δ}

Up to now: dual adjunction between PosComp and V, which restricts to a duality between PosComp and the archimedean Cauchy complete V-algebras.

Final goal:

Subcategory of archimedean Cauchy complete V-algebras

 \cong

(infinitary) variety \mathcal{V}_{δ} .

Idea

Add an operation δ of countably infinite arity to the set of operations of V, together with some new axioms, so that

- 1. any model is an archimedean V-algebra,
- 2. δ calculates the limit of *enough* Cauchy sequences.

Definition Let $A \in \mathcal{V}$. A sequence $(x_n)_{n \in \mathbb{N}} \subseteq A$ is called *HNN-Cauchy* if, for every $n \in \mathbb{N}$, $x_n \leq x_{n+1} \leq x_n \oplus \frac{1}{2^n}$.

Every HNN-Cauchy sequence is a Cauchy sequence.

Proposition

For $A \in V$ *,* A *is Cauchy complete if, and only if, every HNN-Cauchy sequence in A converges.*

The intended interpretation of δ is of the following form.

$$\delta(x_0, x_1, x_2, \dots) = \lim_{n \to \infty} \rho_n(x_0, \dots, x_n),$$

where

- 1. if $(x_n)_{n \in \mathbb{N}}$ is an HNN-Cauchy sequence, then, for all $n \in \mathbb{N}$, $\rho_n(x_0, \ldots, x_n) = x_n$;
- 2. $(\rho_n(x_0, \ldots, x_n))_{n \in \mathbb{N}}$ is an HNN-Cauchy sequence.

If we find a sequence of terms $(\rho_n)_{n \in \mathbb{N}}$ in the language of \mathcal{V} that satisfies (1) and (2), then δ is well-defined on any archimedean Cauchy complete \mathcal{V} -algebra, and it calculates the limit of HNN-Cauchy sequences.

$$ho_0(x_0) = x_0;$$

 $ho_{n+1}(x_0,\ldots,x_{n+1}) \coloneqq (x_0 \lor \cdots \lor x_{n+1}) \land \left(
ho_n(x_0,\ldots,x_n) \oplus \frac{1}{2^n}\right).$

Proposition

Let $A \in \mathcal{V}$.

1. If $(x_n)_{n \in \mathbb{N}} \subseteq A$ is an HNN-Cauchy sequence, then, for all $n \in \mathbb{N}$,

$$\rho_n(x_0,\ldots,x_n)=x_n.$$

2. For any sequence $(x_n)_{n \in \mathbb{N}} \subseteq A$, $(\rho_n(x_0, \ldots, x_n))_{n \in \mathbb{N}}$ is an *HNN-Cauchy sequence.*

(HNN-Cauchy: $x_n \leq x_{n+1} \leq x_n \oplus \frac{1}{2^n}$.)

Let $A \in \mathcal{V}$ be archimedean and Cauchy complete.

$$\delta(x_0, x_1, x_2, \dots) \coloneqq \lim_{n \to \infty} \rho_n(x_0, \dots, x_n).$$

 δ calculates the limit of HNN-Cauchy sequences.

Which equational axioms capture the behaviour of δ ?

The variety \mathcal{V}_{δ}

Definition

The variety V_{δ} is the (infinitary) variety obtained from the variety V by adding an operation δ of countably infinite arity, together with the following additional axioms.

1.
$$\delta(x, x, x, \dots) = x.$$

- 2. $\delta(x_0, x_1, x_2, \dots) \leq \delta(x_0 \lor y_0, x_1 \lor y_1, x_2 \lor y_2, \dots).$
- 3. $\delta(x \ominus \frac{1}{2^0}, x \ominus \frac{1}{2^1}, x \ominus \frac{1}{2^2}, \dots) = x.$
- 4. (For all $n \in \mathbb{N}$)

$$\rho_n(x_0,\ldots,x_n)\leqslant \delta(x_0,x_1,x_2,\ldots)\leqslant \rho_n(x_0,\ldots,x_n)\oplus \frac{1}{2^{n-1}}.$$

Notation: $x \ominus \lambda \coloneqq x \odot (1 - \lambda)$.

1

1.
$$\delta(x, x, x, ...) = x$$
.
2. $\delta(x_0, x_1, x_2, ...) \leq \delta(x_0 \lor y_0, x_1 \lor y_1, x_2 \lor y_2, ...)$.
3. $\delta(x \ominus \frac{1}{2^0}, x \ominus \frac{1}{2^1}, x \ominus \frac{1}{2^2}, ...) = x$.

Proposition

Every $A \in \mathcal{V}_{\delta}$ *is archimedean.*

Proof. Let d(x, y) = 0. Goal: x = y. For all $\lambda \in (0, 1]$, we have $y \ominus \lambda \leq x$. Therefore

$$y \stackrel{(3)}{=} \delta\left(y \ominus \frac{1}{2^0}, y \ominus \frac{1}{2^1}, y \ominus \frac{1}{2^2}, \dots\right) \stackrel{(2)}{\leqslant} \delta(x, x, x, \dots) \stackrel{(1)}{=} x.$$

Hence, $y \leq x$. Analogously, $x \leq y$. Thus, x = y.

4.
$$\rho_n(x_0,...,x_n) \leq \delta(x_0,x_1,x_2,...) \leq \rho_n(x_0,...,x_n) \oplus \frac{1}{2^{n-1}}$$
.

Proposition

Every $A \in \mathcal{V}_{\delta}$ *is Cauchy complete.*

Proof.

Let $(x_n)_{n\in\mathbb{N}}$ be an HNN-Cauchy sequence. Goal: it converges. Since $(x_n)_{n\in\mathbb{N}}$ is HNN-Cauchy, $\rho_n(x_0, \ldots, x_n) = x_n$. Hence $x_n \leq \delta(x_0, x_1, x_2, \ldots) \leq x_n \oplus \frac{1}{2^{n-1}}$. Thus, $d(x_n, \delta(x_0, x_1, x_2, \ldots)) \leq \frac{1}{2^{n-1}}$. Therefore, $(x_n)_{n\in\mathbb{N}}$ converges to $\delta(x_0, x_1, x_2, \ldots)$. Let $U \colon \mathcal{V}_{\delta} \to \mathcal{V}$ be the forgetful functor.

Theorem

- 1. U is faitfhul.
- 2. *U* is full.
- 3. U is injective on objects.
- 4. The image of U is the class of archimedean Cauchy complete *V*-algebras.

Corollary

The variety V_{δ} is isomorphic to the full subcategory of V given by the archimedean Cauchy complete V-algebras.

Summary

- Dual adjunction between PosComp and a finitary variety V.
- 2. Fixed objects:
 - ► in PosComp: every object.
 - ► in *V*: archimedean Cauchy complete *V*-algebras.

 \Rightarrow duality between PosComp and archimedean Cauchy complete $\mathcal{V}\text{-}algebras.$

3. The variety \mathcal{V}_{δ} .

Subcategory of archimedean Cauchy complete V-algebras

 \cong

(infinitary) variety \mathcal{V}_{δ} .

CONCLUSION

Theorem (Main result)

The dual of PosComp is equivalent to a variety.

Thank you for your attention.