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Definition
A compact pospace (X,6) is a compact topological space X,
endowed with a partial order 6, so that the set

{(x, y) ∈ X × X | x 6 y}

is closed in X × X with respect to the product topology.

Example. [0, 1].
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Representation of compact pospaces

For any set I, endow [0, 1]I with the product topology and
product order:

for p, q ∈ [0, 1]I , p 6 q⇔ ∀ i ∈ I pi 6 qi.

Compact pospaces = closed subspaces of [0, 1]I (for some set I).
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PosComp: category of compact pospaces with monotone
continuous maps.
[Monotonicity: x 6 y⇒ f (x) 6 f (y).]
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In Generating the algebraic theory of C(X): the case of partially
ordered compact spaces (2018), Hofmann, Neves and Nora
proved the following.

PosCompop is equivalent to a quasi-variety.

That means, there is a set τ of function symbols and a set of
quasi-equations (∧

i
σi = ρi

)
⇒ γ = η

such that PosCompop is equivalent to the category of τ -algebras
satisfying the given quasi-equations.
[Such quasi-variety is not finitary: one of the primitive function
symbols has countably infinite arity.]
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In the same paper, they left as open the following question.

Question
Is PosCompop equivalent to a variety?

That means, is there a set τ of function symbols and a set of
equations

γ = η

such that PosCompop is equivalent to the category of τ -algebras
satisfying the given equations?
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Theorem (Main result)
The dual of PosComp is equivalent to a variety.

Rest of the talk: sketch of the proof.

We provide
I a set of finitary function symbols, and a single function

symbol δ of countably infinite arity,
I a set of equations,

such that PosCompop is equivalent to the category of algebras
satisfying the given equations.
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Strategy
1. Dual adjunction between PosComp and a finitary variety
V , to be defined. Contravariant functors:
C : PosComp→ V ,
Max : V → PosComp.

2. Fixed objects:
I in PosComp: every object.
I in V : archimedean Cauchy complete V-algebras.
⇒ duality between PosComp and archimedean Cauchy
complete V-algebras.

3. The variety Vδ.
Subcategory of archimedean Cauchy complete V-algebras

∼=

(infinitary) variety Vδ.
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1. Dual adjunction

Let X be a compact pospace.

C(X) := {f : X → [0, 1] | f is continuous and monotone}.

Which internal operations can we define on C(X)?

Example: for f , g ∈ C(X), the function f ∨ g belongs to C(X),
where f ∨ g is the pointwise application to f and g of the binary
supremum ∨ : [0, 1]2 → [0, 1].
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Proposition
Let I be a set, and let τ : [0, 1]I → [0, 1] be a continuous monotone
function. Then, for X a compact pospace, C(X) is closed under τ
(pointwise applied), i.e.,

∀ (fi)i∈I ⊆ C(X) we have x 7→ τ((fi(x))i∈I) ∈ C(X).
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Idea: the terms of the variety Vδ dual to PosComp “are” the
monotone continuous functions τ : [0, 1]I → [0, 1].

We shall obtain every monotone continuous function
[0, 1]I → [0, 1] via composition of the following ones.

1. a ∨ b := max{a, b}.
2. a ∧ b := min{a, b}.
3. a⊕ b := min{a+ b, 1}.
4. a� b := max{a+ b− 1, 0}.
5. Each constant λ ∈ [0, 1].
6. A function δ : [0, 1]N → [0, 1], to be defined.
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The variety V .
A V-algebra is a set A, endowed with internal operations
{∨,∧,⊕,�} ∪ {λ | λ ∈ [0, 1]} such that:

1. (A,∨,∧, 0, 1) is a distributive bounded lattice;
2. (A,⊕, 0) is commutative monoid with absorbing element 1;
3. (A,�, 1) is commutative monoid with absorbing element 0;
4. ⊕ and � distributes over ∨ and ∧;
5. (a⊕ b)� c 6 a⊕ (b� c);
6. For each λ ∈ [0, 1], a 6 (a� (1− λ))⊕ λ;
7. For each λ ∈ [0, 1], a > (a⊕ λ)� (1− λ);
8. For every n,m ∈ {0, 1, 2, . . . }, we have the axiom

a ∧ (b⊕ (c� λ)⊕ · · · ⊕ (c� λ)︸ ︷︷ ︸
n times

) 6

(a� (c⊕ λ)� · · · � (c⊕ λ)︸ ︷︷ ︸
m times

) ∨ b;

9. {∨,∧,⊕,�} operate on the constant symbols λ ∈ [0, 1] as
their intended interpretation in [0, 1] do.

12/36



[0, 1] is a V-algebra (and a compact pospace).

For X compact pospace,

C(X) = {f : X → [0, 1] | f is continuous and monotone}

is a V-algebra, with pointwise applied operations.

C : PosComp→ V .
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For A ∈ V , set
Max(A) := homV(A, [0, 1]).

Topology on Max(A): the smallest one to which belong, for
every a ∈ A and O open subset of [0, 1],
{x ∈Max(A) | x(a) ∈ O}.
Order on Max(A): x 6 y if, and only if, for all a ∈ A, x(a) 6 y(a).
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Theorem
For A ∈ V , Max(A) is a compact pospace.

Proof (L. Reggio).
Sketch: Max(A) = homV(A, [0, 1]) ⊆ [0, 1]A. Given the definition
of Max(A), and the fact that [0, 1]A is a compact pospace with
respect to the product topology and the pointwise order, it is
enough to prove that Max(A) is a closed subset of [0, 1]A. The
idea is that Max(A) is closed because it is defined via equations,
that express the preservation of the primitive function
symbols.
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Contravariant functors:
C : PosComp→ V ,
Max : V → PosComp.

They are (dually) adjoint.

For X ∈ PosComp, the unit is

evX : X →Max(C(X))

x 7→ (evx : C(X)→ [0, 1]; a 7→ a(x)).

For A ∈ V , the unit is

evA : A→ C(Max(A))
a 7→ (eva : Max(A)→ [0, 1]; x 7→ x(a)).
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2. Fixed objects

2a. Fixed objects in PosComp
Theorem
For every X compact pospace, the unit evX is an isomorphism.
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2b. Fixed objects in V
Let A be a V-algebra. For a, b ∈ V , set

d(a, b)

as the maximum between

d↑(a, b) := inf{λ ∈ [0, 1] | b 6 a⊕ λ},

and
d↑(b, a) = inf{λ ∈ [0, 1] | a 6 b⊕ λ}.

When A ⊆ [0, 1]X, d coincides with the sup metric.
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1. d(a, b) > 0.
2. d(a, b) = d(b, a).
3. d(a, c) 6 d(a, b) + d(b, c).
4. d(a, a) = 0.
5. d(a, b) = 0⇒ a = b ???
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Definition
A ∈ V is called archimedean if, for all a, b ∈ A,

d(a, b) = 0⇒ a = b.

Theorem
Let A ∈ V . The following conditions are equivalent.

1. A is archimedean.
2. For every x, y ∈ A with x 6= y, there exists a V-morphism
ϕ : A→ [0, 1] such that ϕ(x) 6= ϕ(y).

3. There exists a set X such that A is a V-subalgebra of [0, 1]X.
4. The unit evA : A→ C(Max(A)) is injective.

To prove [1.⇒2.] we make use of the Subdirect Representation
Theorem, which applies since V has only finitary terms.
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Which property of A is missing in order to have an
isomorphism A ∼= C(Max(A))?
Cauchy completeness.

Definition
Let A ∈ V .
I (an)n∈N ⊆ A is Cauchy if

∀ ε > 0, ∃ k ∈ N: ∀n,m > k, d(an, am) < ε.
I (an)n∈N ⊆ A converges to a ∈ A if

∀ ε > 0, ∃n ∈ N: ∀m > n, d(am, a) < ε.
I (an)n∈N ⊆ A converges if there is a ∈ A such that (an)n∈N

converges to a.
I A is Cauchy complete if every Cauchy sequence in A

converges.
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Theorem
A V-algebra A is Cauchy complete if, and only if, the unit
evA : A→ C(Max(A)) is surjective.
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Theorem
Let A ∈ V . The following conditions are equivalent.

1. The unit evA : A→ C(Max(A)) is an isomorphism.
2. There exists X compact pospace such that A and C(X) are

isomorphic V-algebras.
3. A is archimedean and Cauchy complete.
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3. The variety Vδ
Up to now: dual adjunction between PosComp and V , which
restricts to a duality between PosComp and the archimedean
Cauchy complete V-algebras.

Final goal:

Subcategory of archimedean Cauchy complete V-algebras

∼=

(infinitary) variety Vδ.
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Idea
Add an operation δ of countably infinite arity to the set of
operations of V , together with some new axioms, so that

1. any model is an archimedean V-algebra,
2. δ calculates the limit of enough Cauchy sequences.
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Definition
Let A ∈ V . A sequence (xn)n∈N ⊆ A is called HNN-Cauchy if, for
every n ∈ N,

xn 6 xn+1 6 xn ⊕
1
2n
.

Every HNN-Cauchy sequence is a Cauchy sequence.

Proposition
For A ∈ V , A is Cauchy complete if, and only if, every HNN-Cauchy
sequence in A converges.
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The intended interpretation of δ is of the following form.

δ(x0, x1, x2, . . . ) = lim
n→∞

ρn(x0, . . . , xn),

where
1. if (xn)n∈N is an HNN-Cauchy sequence, then, for all n ∈ N,
ρn(x0, . . . , xn) = xn;

2. (ρn(x0, . . . , xn))n∈N is an HNN-Cauchy sequence.
If we find a sequence of terms (ρn)n∈N in the language of V that
satisfies (1) and (2), then δ is well-defined on any archimedean
Cauchy complete V-algebra, and it calculates the limit of
HNN-Cauchy sequences.
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ρ0(x0) = x0;

ρn+1(x0, . . . , xn+1) := (x0 ∨ · · · ∨ xn+1) ∧
(
ρn(x0, . . . , xn)⊕

1
2n

)
.

Proposition
Let A ∈ V .

1. If (xn)n∈N ⊆ A is an HNN-Cauchy sequence, then, for all n ∈ N,

ρn(x0, . . . , xn) = xn.

2. For any sequence (xn)n∈N ⊆ A, (ρn(x0, . . . , xn))n∈N is an
HNN-Cauchy sequence.

(HNN-Cauchy: xn 6 xn+1 6 xn ⊕ 1
2n .)

28/36



Let A ∈ V be archimedean and Cauchy complete.

δ(x0, x1, x2, . . . ) := lim
n→∞

ρn(x0, . . . , xn).

δ calculates the limit of HNN-Cauchy sequences.

Which equational axioms capture the behaviour of δ?
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The variety Vδ

Definition
The variety Vδ is the (infinitary) variety obtained from the
variety V by adding an operation δ of countably infinite arity,
together with the following additional axioms.

1. δ(x, x, x, . . . ) = x.
2. δ(x0, x1, x2, . . . ) 6 δ(x0 ∨ y0, x1 ∨ y1, x2 ∨ y2, . . . ).
3. δ

(
x 	 1

20 , x 	 1
21 , x 	 1

22 , . . .
)
= x.

4. (For all n ∈ N)

ρn(x0, . . . , xn) 6 δ(x0, x1, x2, . . . ) 6 ρn(x0, . . . , xn)⊕
1

2n−1 .

Notation: x 	 λ := x � (1− λ).
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1. δ(x, x, x, . . . ) = x.
2. δ(x0, x1, x2, . . . ) 6 δ(x0 ∨ y0, x1 ∨ y1, x2 ∨ y2, . . . ).
3. δ

(
x 	 1

20 , x 	 1
21 , x 	 1

22 , . . .
)
= x.

Proposition
Every A ∈ Vδ is archimedean.

Proof.
Let d(x, y) = 0. Goal: x = y. For all λ ∈ (0, 1], we have
y 	 λ 6 x. Therefore

y (3)
= δ

(
y 	 1

20 , y 	
1
21 , y 	

1
22 , . . .

)
(2)
6 δ(x, x, x, . . . ) (1)

= x.

Hence, y 6 x. Analogously, x 6 y. Thus, x = y.
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4. ρn(x0, . . . , xn) 6 δ(x0, x1, x2, . . . ) 6 ρn(x0, . . . , xn)⊕ 1
2n−1 .

Proposition
Every A ∈ Vδ is Cauchy complete.

Proof.
Let (xn)n∈N be an HNN-Cauchy sequence. Goal: it converges.
Since (xn)n∈N is HNN-Cauchy, ρn(x0, . . . , xn) = xn. Hence
xn 6 δ(x0, x1, x2, . . . ) 6 xn ⊕ 1

2n−1 . THus,
d(xn, δ(x0, x1, x2, . . . )) 6

1
2n−1 . Therefore, (xn)n∈N converges to

δ(x0, x1, x2, . . . ).
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Let U : Vδ → V be the forgetful functor.

Theorem
1. U is faitfhul.
2. U is full.
3. U is injective on objects.
4. The image of U is the class of archimedean Cauchy complete
V-algebras.

Corollary
The variety Vδ is isomorphic to the full subcategory of V given by the
archimedean Cauchy complete V-algebras.
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Summary
1. Dual adjunction between PosComp and a finitary variety
V .

2. Fixed objects:
I in PosComp: every object.
I in V : archimedean Cauchy complete V-algebras.
⇒ duality between PosComp and archimedean Cauchy
complete V-algebras.

3. The variety Vδ.
Subcategory of archimedean Cauchy complete V-algebras

∼=

(infinitary) variety Vδ.
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Conclusion

Theorem (Main result)
The dual of PosComp is equivalent to a variety.
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Thank you for your attention.
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