Equivalence à la Mundici for lattice-ordered monoids

Marco Abbadini

23 January 2020, Fisciano (SA), Italy

Università degli Studi di Milano

Motivation

Dualities

Stone duality

Stone spaces (Comp. Hausd. 0-dimensional) $\begin{array}{l} \textit{Boolean algebras}\\ C(X, \{0, 1\}) \coloneqq\\ \{f \colon X \to \{0, 1\} \text{ continuous}\}\\ \lor, \land, 0, 1, \neg. \end{array}$

Priestley duality

Priestley spacesDistributive lattices(Stone space with a partial order $C_{\leq}(X, \{0, 1\}) :=$ + totally order-disconnectedness) $\{f : X \to \{0, 1\} \text{ cont. and monot.}\}$ $\lor, \land, 0, 1.$

Duality for compact Hausdorff spaces

Compact Hausdorff spaces

 $\begin{aligned} & \textit{MV-algebras} + \dots \\ & \textit{C}(X, [0, 1]) \coloneqq \\ & \{f \colon X \to [0, 1] \text{ continuous} \} \\ & \oplus, \odot, \lor, \land, 0, 1, \neg, \dots \end{aligned}$

Duality for compact ordered spaces

Compact ordered spaces???(Comp. Hausd. space X with a $C_{\leq}(X, [0, 1]) :=$ partial order \leq , which is closed in $\{f : X \to [0, 1] \text{ cont. and monot.}\}$ $X \times X$) $\oplus, \odot, \lor, \land, 0, 1, \ldots$

Recap

For some reason of some interest (= generalisation of Priestley duality), one wants to study algebras of [0, 1]-valued continuous monotone functions.

Fact

It is easier to study algebras of $\ensuremath{\mathbb{R}}\xspace$ -valued continuous monotone functions.

Aim

Make a bridge between algebras of $\mathbb R\text{-valued}$ and [0,1]-valued continuous monotone functions.

The two categories

Definition

An ℓ -monoid is a set M, endowed with operations $+, \lor, \land, 0$ such that:

- M1. $\langle M; \vee, \wedge \rangle$ is a distributive lattice;
- M2. $\langle M; +, 0 \rangle$ is a commutative monoid;
- M3. + distributes over \lor and $\land:$

A unital $\ell\text{-monoid}$ is an $\ell\text{-monoid}\ M$ with two distinguished elements $1,-1\in M$ such that:

U1. $-1 \le 0 \le 1;$

U2. (-1) + 1 = 0;

U3. For all $x \in M$, there exists $n \in \mathbb{N}$ such that $n(-1) \leq x \leq n1$.

Example \mathbb{R} is a unital ℓ -monoid.

Example

Given a compact ordered space X (e.g. X = [0, 1]),

 $C_{\leq}(X,\mathbb{R}) \coloneqq \{f \colon X \to \mathbb{R} \mid f \text{ is continuous and monotone}\}\$

is a unital ℓ -monoid.

A morphism of unital ℓ -monoids is a map that preserves $+, \lor, \land, 0, 1, -1$.

Idea

A unital ℓ -monoid M is determined by

$$\widetilde{\Gamma}(M) \coloneqq \{x \in M \mid 0 \le x \le 1\},\$$

endowed with the following operations:

•
$$x \oplus y \coloneqq (x + y) \land 1;$$

•
$$x \odot y := (x + y - 1) \lor 0;$$

- \lor is defined by restriction;
- \wedge is defined by restriction;
- 0 belongs to $\widetilde{\Gamma}(M)$;
- 1 belongs to $\widetilde{\Gamma}(M)$.

Which axioms are satisfied by $\widetilde{\Gamma}(M)$?

MMV-algebras

Definition

We call *MMV-algebra* (for *Monoidal MV-algebra*) an algebra $\mathbf{A} = \langle A; \oplus, \odot, \lor, \land, 0, 1 \rangle$ such that

(A1) $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice;

(A2) $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids;

(A3)
$$x \oplus 1 = 1$$
 and $x \odot 0 = 0$;

(A5) the operations \oplus and \odot distribute over \lor and \land ;

(A6) $[(x \oplus y) \odot z] \oplus (x \odot y) = [(x \odot y) \oplus z] \odot (x \oplus y);$

(A7) $[(x \oplus y) \odot z] \oplus (x \odot y) = [(x \odot z) \oplus y] \odot (x \oplus z);$

- (A8) $(x \oplus y) \odot z = \{[(x \oplus y) \odot z] \oplus (x \odot y)\} \land z;$
- (A9) $(x \odot y) \oplus z = \{ [(x \odot y) \oplus z] \odot (x \oplus y) \} \lor z.$

MMV-algebras form a finitely based variety of finitary algebras!

Example [0, 1] is an MMV-algebra.

Example

Given a compact ordered space X (e.g. X = [0, 1]),

 $C_{\leq}(X,[0,1]) := \{f \colon X \to [0,1] \mid f \text{ is continuous and monotone}\}$

is an MMV-algebra.

Example

Every distributive lattice is an MMV-algebra, by setting $\oplus := \lor$ and $\odot := \land.$

A morphism of MMV-algebras is a map that preserves \oplus , \odot , \lor , \land , 0, 1.

The equivalence

Theorem (Main result) The category of unital ℓ -monoids is equivalent to the category of MMV-algebras.

	MMV-algebras	Unital ℓ-monoids
Pro	Finitely based variety	Handy operations and
	of finitary algebras.	axioms.
Con	Unwieldy operations and axioms.	Not first-order definable.

The unit interval functor $\widetilde{\Gamma}$

Given a unital ℓ -monoid M,

$$\widetilde{\Gamma}(M) := \{x \in M \mid 0 \le x \le 1\}$$

is an MMV-algebra, where

- $x \oplus y \coloneqq (x + y) \land 1;$
- $x \odot y \coloneqq (x + y 1) \lor 0;$
- \lor is defined by restriction;
- \wedge is defined by restriction;
- 0 belongs to Γ(M);
- 1 belongs to $\widetilde{\Gamma}(M)$.

 $\widetilde{\Gamma}$ defines a functor from the category of unital $\ell\text{-monoids}$ to the category of MMV-algebras.

Goal: to construct a quasi-inverse of $\widetilde{\Gamma}.$

Idea

An element f of a unital ℓ -monoid M is determined by the function

$$\eta_M(f) \colon \mathbb{Z} \to \widetilde{\Gamma}(M)$$

 $n \mapsto [(f \lor n) \land (n+1)] - n$

Question

Which are the properties of the function $\eta_M(f)$?

Definition

A good pair in an MMV-algebra A is a pair (x_0, x_1) of elements of A such that $x_0 \oplus x_1 = x_0$ and $x_0 \odot x_1 = x_1$.

A doogood sequence in A is a function $x \colon \mathbb{Z} \to A$ such that

- 1. definitely for $k \to -\infty$ we have x(k) = 1;
- 2. definitely for $k \to +\infty$ we have x(k) = 0;
- 3. for each $k \in \mathbb{Z}$, (x(k), x(k+1)) is a good pair.

Given an MMV-algebra A, we set $\widetilde{\Xi}(A)$ as the set of doogood sequences in A.

 $\widetilde{\Xi}(A)$ becomes a unital ℓ -monoid.

 $\widetilde{\Xi}$ defines a functor from the category of MMV-algebras to the category of unital $\ell\text{-monoids}.$

Proposition $\widetilde{\Gamma}$ and $\widetilde{\Xi}$ are quasi-inverses.

Theorem (Main result)

The category of unital ℓ -monoids is equivalent to the category of MMV-algebras.

Conclusions

Main result

The category of unital ℓ -monoids is equivalent to the category of MMV-algebras.

- No axiom of choice needed to prove the theorem.
- Classical Mundici's equivalence is a consequence (this is shown using the axiom of choice).

Future work

 Prove, without the axiom of choice, that the axioms of MMV-algebras hold in any MV-algebra. Consequence: proof of classical Mundici's equivalence without axiom of choice.

Future work

2. Facts:

- a1. $\langle \mathbb{R};+,\vee,\wedge,0\rangle$ does not generate the variety of $\ell\text{-monoids}.$
- a2. The variety generated by $\langle \mathbb{R};+,\vee,\wedge,0\rangle$ is not finitely based.
- a3. A countable equational basis for the variety generated by $\langle \mathbb{R};+,\vee,\wedge,0\rangle \text{ is known}.$

To do:

- b1. Prove that $\langle [0,1];\oplus,\odot,\vee,\wedge,0,1\rangle$ does not generate the variety of MMV-algebras.
- b2. Prove that the variety generated by $\langle [0,1];\oplus,\odot,\vee,\wedge,0,1\rangle$ is not finitely based.
- b3. Provide a countable equational basis for the variety generated by $\langle [0,1];\oplus,\odot,\vee,\wedge,0,1\rangle.$

3. Fact:

The class of $(+, \lor, \land, 0)$ -subreducts of ℓ -groups is axiomatised by the equations defining ℓ -monoids together with the cancellation law:

$$x + z = y + z \Longrightarrow x = y.$$

To do:

Prove that the class of $\{\oplus,\odot,\vee,\wedge,0,1\}$ -subreducts of MV-algebras is axiomatised by the equations defining MMV-algebras together with the single quasi-equation

If
$$x \oplus z = y \oplus z$$
 and $x \odot z = y \odot z$, then $x = y$.

Thank you for your attention!