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Università degli Studi di Milano



Motivation



Dualities

Stone duality

Stone spaces

(Comp. Hausd. 0-dimensional)

Boolean algebras

C (X , {0, 1}) :=

{f : X → {0, 1} continuous}
∨,∧, 0, 1,¬.

Priestley duality

Priestley spaces

(Stone space with a partial order

+ totally order-disconnectedness)

Distributive lattices

C≤(X , {0, 1}) :=

{f : X → {0, 1} cont. and monot.}
∨,∧, 0, 1.
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Dualities: above 0-dimensionality

Duality for compact Hausdorff spaces

Compact Hausdorff spaces MV-algebras + . . .

C (X , [0, 1]) :=

{f : X → [0, 1] continuous}
⊕,�,∨,∧, 0, 1,¬, . . . .

Duality for compact ordered spaces

Compact ordered spaces

(Comp. Hausd. space X with a

partial order ≤, which is closed in

X × X )

???

C≤(X , [0, 1]) :=

{f : X → [0, 1] cont. and monot.}
⊕,�,∨,∧, 0, 1, . . . .
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Motivation

Recap
For some reason of some interest (= generalisation of Priestley duality),

one wants to study algebras of [0, 1]-valued continuous monotone

functions.

Fact
It is easier to study algebras of R-valued continuous monotone functions.

Aim
Make a bridge between algebras of R-valued and [0, 1]-valued continuous

monotone functions.
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The two categories



Unital `-monoids

Definition
An `-monoid is a set M, endowed with operations +,∨,∧, 0 such that:

M1. 〈M;∨,∧〉 is a distributive lattice;

M2. 〈M; +, 0〉 is a commutative monoid;

M3. + distributes over ∨ and ∧:

A unital `-monoid is an `-monoid M with two distinguished elements

1,−1 ∈ M such that:

U1. −1 ≤ 0 ≤ 1;

U2. (−1) + 1 = 0;

U3. For all x ∈ M, there exists n ∈ N such that n(−1) ≤ x ≤ n1.
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Unital `-monoids

Example
R is a unital `-monoid.

Example
Given a compact ordered space X (e.g. X = [0, 1]),

C≤(X ,R) := {f : X → R | f is continuous and monotone}

is a unital `-monoid.

A morphism of unital `-monoids is a map that preserves +,∨,∧, 0, 1,−1.
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The unit interval of a unital `-monoid

Idea
A unital `-monoid M is determined by

Γ̃(M) := {x ∈ M | 0 ≤ x ≤ 1},

endowed with the following operations:

� x ⊕ y := (x + y) ∧ 1;

� x � y := (x + y − 1) ∨ 0;

� ∨ is defined by restriction;

� ∧ is defined by restriction;

� 0 belongs to Γ̃(M);

� 1 belongs to Γ̃(M).

Which axioms are satisfied by Γ̃(M)?
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MMV-algebras

Definition

We call MMV-algebra (for Monoidal MV-algebra) an algebra

A = 〈A;⊕,�,∨,∧, 0, 1〉 such that

(A1) 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice;

(A2) 〈A;⊕, 0〉 and 〈A;�, 1〉 are commutative monoids;

(A3) x ⊕ 1 = 1 and x � 0 = 0;

(A5) the operations ⊕ and � distribute over ∨ and ∧;

(A6) [(x ⊕ y)� z ]⊕ (x � y) = [(x � y)⊕ z ]� (x ⊕ y);

(A7) [(x ⊕ y)� z ]⊕ (x � y) = [(x � z)⊕ y ]� (x ⊕ z);

(A8) (x ⊕ y)� z = {[(x ⊕ y)� z ]⊕ (x � y)} ∧ z ;

(A9) (x � y)⊕ z = {[(x � y)⊕ z ]� (x ⊕ y)} ∨ z .

MMV-algebras form a finitely based variety of finitary algebras!
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MMV-algebras

Example
[0, 1] is an MMV-algebra.

Example
Given a compact ordered space X (e.g. X = [0, 1]),

C≤(X , [0, 1]) := {f : X → [0, 1] | f is continuous and monotone}

is an MMV-algebra.

Example
Every distributive lattice is an MMV-algebra, by setting ⊕ := ∨ and

� := ∧.

A morphism of MMV-algebras is a map that preserves ⊕,�,∨,∧, 0, 1.
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The equivalence



Main result: equivalence

Theorem (Main result)
The category of unital `-monoids is equivalent to the category of

MMV-algebras.

MMV-algebras Unital `-monoids

Pro Finitely based variety Handy operations and

of finitary algebras. axioms.

Con Unwieldy operations and axioms. Not first-order definable.
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The unit interval functor Γ̃

Given a unital `-monoid M,

Γ̃(M) := {x ∈ M | 0 ≤ x ≤ 1}

is an MMV-algebra, where

� x ⊕ y := (x + y) ∧ 1;

� x � y := (x + y − 1) ∨ 0;

� ∨ is defined by restriction;

� ∧ is defined by restriction;

� 0 belongs to Γ̃(M);

� 1 belongs to Γ̃(M).

Γ̃ defines a functor from the category of unital `-monoids to the category

of MMV-algebras.

Goal: to construct a quasi-inverse of Γ̃.
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Idea to construct a quasi-inverse of Γ̃

Idea
An element f of a unital `-monoid M is determined by the function

ηM(f ) : Z→ Γ̃(M)

n 7→ [(f ∨ n) ∧ (n + 1)]− n

Question
Which are the properties of the function ηM(f )?
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Doogood sequences

Definition
A good pair in an MMV-algebra A is a pair (x0, x1) of elements of A such

that x0 ⊕ x1 = x0 and x0 � x1 = x1.

A doogood sequence in A is a function x: Z→ A such that

1. definitely for k → −∞ we have x(k) = 1;

2. definitely for k → +∞ we have x(k) = 0;

3. for each k ∈ Z, (x(k), x(k + 1)) is a good pair.
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Doogood sequences give quasi-inverse.

Given an MMV-algebra A, we set Ξ̃(A) as the set of doogood sequences

in A.

Ξ̃(A) becomes a unital `-monoid.

Ξ̃ defines a functor from the category of MMV-algebras to the category

of unital `-monoids.

Proposition
Γ̃ and Ξ̃ are quasi-inverses.

Theorem (Main result)
The category of unital `-monoids is equivalent to the category of

MMV-algebras.
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Conclusions



Conclusions

Main result
The category of unital `-monoids is equivalent to the category of

MMV-algebras.

� No axiom of choice needed to prove the theorem.

� Classical Mundici’s equivalence is a consequence (this is shown using

the axiom of choice).
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Future work



Future work

1. Prove, without the axiom of choice, that the axioms of

MMV-algebras hold in any MV-algebra.

Consequence: proof of classical Mundici’s equivalence without axiom

of choice.
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Future work

2. Facts:

a1. 〈R; +,∨,∧, 0〉 does not generate the variety of `-monoids.

a2. The variety generated by 〈R; +,∨,∧, 0〉 is not finitely based.

a3. A countable equational basis for the variety generated by

〈R; +,∨,∧, 0〉 is known.

To do:

b1. Prove that 〈[0, 1];⊕,�,∨,∧, 0, 1〉 does not generate the variety of

MMV-algebras.

b2. Prove that the variety generated by 〈[0, 1];⊕,�,∨,∧, 0, 1〉 is not

finitely based.

b3. Provide a countable equational basis for the variety generated by

〈[0, 1];⊕,�,∨,∧, 0, 1〉.
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Future work

3. Fact:

The class of (+,∨,∧, 0)-subreducts of `-groups is axiomatised by

the equations defining `-monoids together with the cancellation law:

x + z = y + z =⇒ x = y .

To do:

Prove that the class of {⊕,�,∨,∧, 0, 1}-subreducts of MV-algebras

is axiomatised by the equations defining MMV-algebras together

with the single quasi-equation

If x ⊕ z = y ⊕ z and x � z = y � z , then x = y .
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Thank you for your attention!
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