Operazioni che preservano l'integrabilità: caratterizzazione e strutture algebriche correlate.

Marco Abbadini

Tutore: Prof. Vincenzo Marra

Overview

Parte I: Operazioni che preservano l'integrabilità: caratterizzazione

Caratterizzazione delle operazioni per le quali gli spazi \mathcal{L}^1 sono chiusi.

Parte II: Algebra Universale

Presentazione dell'ambito di ricerca.

Parte III: Strutture algebriche correlate

Studio degli insiemi dotati delle operazioni caratterizzate in Parte I che soddisfano certi assiomi.

Overview

Parte I: Operazioni che preservano l'integrabilità: caratterizzazione

Parte II: Algebra universale

Parte III: Strutture algebriche correlate

Per $(\Omega, \mathcal{F}, \mu)$ spazio di misura, poniamo

$$\mathcal{L}^1(\mu) = \left\{ f \colon \Omega \to \mathbb{R} \mid f \ \text{\`e \mathcal{F}-misurabile e } \int_{\Omega} \lvert f \rvert \, d\mu < \infty \right\}.$$

Se $f,g\in\mathcal{L}^1(\mu)$, allora

- $ightharpoonup f + g \in \mathcal{L}^1(\mu);$
- ► $f \cdot g$ potrebbe non appartenere a $\mathcal{L}^1(\mu)$.

Sia I un insieme, e $\tau \colon \mathbb{R}^I \to \mathbb{R}$.

Per ogni insieme Ω , τ definisce, puntualmente, un'operazione sull'insieme delle funzioni da Ω in \mathbb{R} .

Diciamo che τ preserva l'integrabilità su μ se $\mathcal{L}^1(\mu)$ è chiuso per τ (definito puntualmente). Diciamo che τ preserva l'integrabilità se preserva l'integrabilità su ogni misura.

Esempi

- 1. L'addizione $+: \mathbb{R}^2 \to \mathbb{R}$.
- 2. Per $\lambda \in \mathbb{R}$, la moltiplicazione scalare $\lambda(\cdot) : \mathbb{R} \to \mathbb{R}$.
- 3. La costante $0: \mathbb{R}^0 \to \mathbb{R}$.
- 4. Il sup binario $\vee : \mathbb{R}^2 \to \mathbb{R}$.
- 5. L'inf binario $\wedge : \mathbb{R}^2 \to \mathbb{R}$.
- 6. L'operazione unaria $\overline{\ }: \mathbb{R} \to \mathbb{R}$, detta *troncamento a* 1:

$$\overline{x} := x \wedge 1$$
.

7. L'operazione $Y : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$, chiamata *sup troncato*:

$$\bigvee(y,x_1,x_2,\dots) := \sup_{n \in \{1,2,\dots\}} \inf\{x_n,y\}.$$

Domanda

Per quali operazioni $\mathbb{R}^I \to \mathbb{R}$ sono chiusi gli spazi $\mathcal{L}^1(\mu)$? In altre parole, quali operazioni preservano l'integrabilità?

Teorema

Le operazioni che preservano l'integrabilità sono esattamente quelle ottenute per composizione da

$$+, \lambda(\cdot)$$
 (per ogni $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ e Υ .

Abbiamo una caratterizzazione esplicita.

Numero finito di variabili

- $\tau \colon \mathbb{R}^n \to \mathbb{R}$ preserva l'integrabilità se, e solo se,
 - 1. τ è Borel misurabile, e
 - 2. $\exists \lambda_1, \dots, \lambda_n \in \mathbb{R}$ tali che, per ogni $x \in \mathbb{R}^n$, abbiamo

$$|\tau(x)| \leq \lambda_1 |x_1| + \cdots + \lambda_n |x_n|.$$

OVERVIEW

Parte I: Operazioni che preservano l'integrabilità: caratterizzazione

Parte II: Algebra universale

Parte III: Strutture algebriche correlate

Esempio: gruppi

Un gruppo è un insieme *G* su cui sono definite le seguenti operazioni:

- 1. Prodotto. $: G^2 \to G$.
- 2. Inverso. $(\cdot)^{-1}: G \to G$.
- 3. Elemento neutro: $e \in G$.

e che soddisfa i seguenti assiomi:

1.
$$\forall x, y, z \in G$$
 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

- 2. $\forall x \in G \quad x \cdot e = x$.
- 3. $\forall x \in G \quad e \cdot x = x$.
- 4. $\forall x \in G$ $x \cdot x^{-1} = e$.
- $5. \ \forall x \in G \quad x^{-1} \cdot x = e.$

Un omomorfismo di gruppi $f: G \to H$ è una funzione che preserva prodotto, inverso e elemento neutro:

- 1. Per ogni $x, y \in G, f(x \cdot y) = f(x) \cdot f(y);$
- 2. Per ogni $x \in G$, $f(x^{-1}) = f(x)^{-1}$;
- 3. f(e) = e.

Esempio: Spazi vettoriali reali

Uno spazio vettoriale reale è un insieme V su cui sono definite le seguenti operazioni

- 1. $+: V^2 \to V$.
- $2. -: V \rightarrow V.$
- 3. $0 \in V$.
- 4. $\lambda(\cdot): V \to V$ (per ogni $\lambda \in \mathbb{R}$).

e che soddisfa i seguenti assiomi.

- 1. Assiomi di gruppo per (V, +, -, 0), e $\forall u, v \in V$ u + v = v + u.
- 2. Per ogni $\lambda \in \mathbb{R}$, si ha l'assioma $\forall u, v \in V \quad \lambda(u+v) = \lambda u + \lambda v$.
- 3. Per ogni $\lambda_1, \lambda_2, \lambda \in \mathbb{R}$ t.c. $\lambda = \lambda_1 + \lambda_2$, si ha l'assioma $\forall u \in V \quad \lambda u = \lambda_1 u + \lambda_2 u$.
- 4. Per ogni $\lambda_1, \lambda_2 \in \mathbb{R}$, si ha l'assioma $\forall u \in V \quad \lambda_1(\lambda_2 u) = (\lambda_1 \lambda_2) u$.
- 5. $\forall u \in V$ 1u = u.

Un omomorfismo di spazi vettoriali reali (o applicazione lineare) $f \colon V \to W$ è una funzione che preserva +, -, 0, $\lambda(\cdot)$ (per $\lambda \in \mathbb{R}$).

- 1. Per ogni $u, v \in V$, f(u + v) = f(u) + f(v);
- 2. Per ogni $u \in V$, f(-u) = -f(u);
- 3. f(0) = 0;
- 4. Per $\lambda \in \mathbb{R}$: per ogni $u \in V$, $f(\lambda u) = \lambda f(u)$.

Fissato un insieme \mathcal{L} (esempio: $\{\cdot, (\cdot)^{-1}, e\}$), e fissato per ciascun elemento $\tau \in \mathcal{L}$ una cardinalità ar_{τ}

(esempio: 2 per
$$\cdot$$
, 1 per $(\cdot)^{-1}$, 0 per e),

una \mathcal{L} -algebra è un insieme A dotato, per ogni $\tau \in \mathcal{L}$, di una funzione $\tau_A \colon A^{ar_{\tau}} \to A$.

Esempio:

$$\cdot_A$$
; : $A^2 \rightarrow A$;
 $(\cdot)_A^{-1}$: $A \rightarrow A$;
 e : $A^0 = \{\star\} \rightarrow A$.

Una varietà di algebre è la classe $\mathcal V$ delle $\mathcal L$ -algebre (per un determinato insieme $\mathcal L$) che soddisfano un determinato insieme di assiomi equazionali, cioè della forma

$$\forall (x_i)_{i \in I} \quad \tau((x_i)_{i \in I}) = \rho((x_i)_{i \in I}).$$

Per ogni coppia $A, B \in \mathcal{V}$, un omomorfismo da A a B è una funzione $f: A \to B$ che preserva ogni operazione $\tau \in \mathcal{L}$:

$$f(\tau_A((x_i)_{i\in ar_\tau})) = \tau_B((f(x_i))_{i\in ar_\tau}).$$

Esempi di varietà di algebre

- 1. Gruppi.
- 2. Spazi vettoriali reali.
- 3. Anelli.
- 4. Reticoli.
- 5. Algebre di Lie.

L'algebra universale studia le proprietà comuni alle varietà di algebre.

Esempi

- 1. Un omomorfismo ammette un omomorfismo inverso se, e solo se, è biiettivo.
- 2. Teoremi di isomorfismo.
- 3. Per ogni insieme X, esiste l'oggetto libero $Free_X$ su X (il gruppo libero, per i gruppi).

Esso consiste di tutte le "parole" ottenibili da *X* utilizzando le operazioni della varietà di algebre, modulo identificazioni dovute agli assiomi.

Esistenza prodotto tensoriale $V \otimes W$.

OVERVIEW

Parte I: Operazioni che preservano l'integrabilità: caratterizzazione

Parte II: Algebra universale

Parte III: Strutture algebriche correlate

Ricordiamo:

1. su \mathbb{R} sono definite le operazioni

$$+, \lambda(\cdot)$$
 (per ogni $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ e Υ ;

2. per ogni spazio di misura $(\Omega, \mathcal{F}, \mu)$, le operazioni sopra sono definite in $\mathcal{L}^1(\mu)$, puntualmente.

 $\mathcal{V}\coloneqq$ collezione degli insiemi dotati di operazioni denotate con i simboli

$$+, \lambda(\cdot)$$
 (per ogni $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ e Υ ,

che soddisfano tutte le equazioni soddisfatte da ${\mathbb R}.$

Esempio di equazione: $\forall x \ 3(2(x)) = 6(x)$.

Omomorfismi tra oggetti di V: funzioni che preservano

$$+, \lambda(\cdot)$$
 (per ogni $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ e Υ .

 ${\cal V}$ è una varietà di algebre.

Appartengono a V:

- 1. $\mathcal{L}^{1}(\mu)$;
- 2. $L^1(\mu) := \frac{\mathcal{L}^1(\mu)}{\sim}$, dove $f \sim g$ sse f = g μ -quasi ovunque.

Dato Ω un insieme, dato $S \subseteq \{f : \Omega \to \mathbb{R}\}$ chiuso per

$$+, \lambda(\cdot)$$
 (per ogni $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ e Υ ,

(puntualmente definite), dato $\mathcal I$ insieme di sottoinsiemi di Ω t.c.

- 1. $\emptyset \in \mathcal{I}$;
- 2. $B \in \mathcal{I}, A \subseteq B \Rightarrow A \in \mathcal{I}$;
- 3. $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{I}\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{I};$

e posto $f \sim g$ sse $\{x \in X \mid f(x) \neq g(x)\} \in \mathcal{I}$, allora

$$\frac{S}{\sim} \in \mathcal{V}$$
.

Teorema

Ogni $A \in \mathcal{V}$ *si ottiene in questo modo.*

RISULTATI

Teorema

 $\mathcal V$ coincide con "la categoria degli spazi di Riesz troncati Dedekind σ -completi".

Corollario

La categoria degli spazi di Riesz troncati Dedekind σ -completi è una varietà di algebre.

Perciò ad essa si applicano i risultati dell'algebra universale.

Corollario

Ogni equazione che vale in \mathbb{R} , con operazioni

$$+, \lambda(\cdot)$$
 (per ogni $\lambda \in \mathbb{R}$), $0, \vee, \wedge, \overline{\cdot}$ e Υ ,

vale in ogni spazio di Riesz troncato Dedekind σ -completo (esempio: $\mathcal{L}^1(\mu), L^1(\mu)$).

Esempio di equazione: $\forall x, y \quad 7(x+y) = 7x + 7y$.

Teorema

Se in \mathbb{R} *vale*

$$\forall (x_i)_{i \in I} \quad \begin{cases} \tau_1((x_i)_i) = \rho_1((x_i)_i); \\ \tau_2((x_i)_i) = \rho_2((x_i)_i); \end{cases} \Rightarrow \alpha((x_i)_i) = \beta((x_i)_i),$$

$$\vdots$$

dove le operazioni utilizzate sono $0, +, \lambda(\cdot)$ (per ogni $\lambda \in \mathbb{R}$), \vee , \wedge , $\overline{\cdot}$ e Υ , allora vale in ogni spazio di Riesz troncato Dedekind σ -completo (esempio: $\mathcal{L}^1(\mu)$, $L^1(\mu)$).

ESEMPIO:

In \mathbb{R} vale

$$\begin{cases} f = \sup_{n} f_{n} \\ g = \sup_{n} g_{n} \end{cases} \Rightarrow f + g = \sup_{n} \{ f_{n} + g_{n} \}. \tag{1}$$

La condizione $a = \sup_n a_n$ è equivalente a un sistema di numerabili equazioni:

$$\begin{cases} a = \Upsilon(a, a_1, a_2, \dots); \\ a_1 \wedge a = a_1; \\ a_2 \wedge a = a_2; \\ a_3 \wedge a = a_3; \\ \vdots \end{cases}$$

Perciò (1) vale in ogni spazio di Riesz troncato Dedekind σ -completo (esempio: $L^1(\mu)$).

Grazie per l'attenzione.