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Stone duality:
Stoneop ∼= Boole

Two ways of reading it.
1. Representation of Boolean algebras (as algebras of sets).
2. Stone is the dual of a variety of finitary algebras.

Variety of algebras: category of τ -algebras (where τ is a set of
function symbols) satisfying a certain set of equations.

∀x γ(x) = η(x).

Finitary algebras: every primitive operation has finite arity.
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CompHaus := category of compact Hausdorff spaces;
morphisms: continuous functions.

CompHausop ∼= ?

Is CompHausop equivalent to...
I ... a variety of finitary algebras? No
I ... a class of finitary algebras? Yes (Stone-Gelfand

duality)
I ... an elementary class? Open question
I ... a variety of (possibly infinitary) algebras? Yes
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Given a Stone space S, the Boolean algebra associated to S is

{A ⊆ S | A is clopen},

or, equivalently (taking charateristic functions),

{f : S→ {0, 1} | f is continuous}.
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The space
{f : S→ {0, 1} | S is continuous}

is closed under every continuous function {0, 1}I → {0, 1} (I a
set). For example

∨ : {0, 1}2 → {0, 1};

∧ : {0, 1}2 → {0, 1};

¬ : {0, 1} → {0, 1};

0 : {0, 1}0 → {0, 1};

1 : {0, 1}0 → {0, 1}.

1. A function {0, 1}I → {0, 1} is continuous if, and only if, it
depends only on finitely many coordinates.

2. Functional completeness: every continuous function
{0, 1}I → {0, 1} is obtained from the projection functions
πi : {0, 1}I → {0, 1} by composition with ∨,∧,¬, 0, 1.
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Given a compact Hausdorff space X, the continuous functions
X → {0, 1} “are not enough”.

Example
[0, 1]→ {0, 1}.

They don’t separate points, they forget too much about the
structure of [0, 1].
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C(X, [0, 1]) := {f : X → [0, 1] | f is continuous}.

Operations: continuous functions [0, 1]I → [0, 1]
(depend on at most countably many coordinates).

 CompHausop ∼= variety of (infinitary) algebras ∆.

C(X,R) := {f : X → R | f is continuous}.

 Stone-Gelfand duality.
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Stone-Gelfand duality
Given X a compact Hausdorff space, which operations can we
define on C(X,R)?

Here some of them.
1. Pointwise sum +.
2. Supremum, or pointwise maximum ∨.
3. Infimum, or pointwise minimum ∧.
4. For each λ ∈ R, the scalar multiplication λ · −.
5. The constant function 0.
6. The constant function 1.

These operations on C(X,R) are “enough” in order to capture
the structure of C(X,R) and to recover X from C(X,R).
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Which properties are satisfied by C(X,R), endowed with these
operations?

Given a set V, endowed with operations +,∨,∧, {λ · −}λ∈R, 0, 1,
we say that...

1. ... V is a vector lattice, if
1.1 〈V, 0,+, {λ · −}λ∈R〉 is a vector space;
1.2 〈V,∨,∧〉 is a distributive lattice;
1.3 the order is translation invariant, i.e., for all f , g, h ∈ V,

f 6 g ⇒ f + h 6 g + h;

1.4 the order is positively homogeneous, i.e., for all λ ∈ R+, for all
f , g ∈ V,

f 6 g ⇒ λ · f 6 λ · g.
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2. ... V is archimedean, if

for all f , g ∈ V such that f > 0 and g > 0, we have:

if, for all n ∈ N, n · f 6 g, then f = 0.
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3. ... 1 is a strong unit, if

for all f ∈ V, there exists n ∈ N s.t. −n · 1 6 f 6 n · 1,
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4. ... V is norm-complete if, defining the “supremum norm” as

‖f ‖ := inf{λ ∈ R+ | −λ · 1 6 f 6 λ · 1},

V is complete in the metric induced by this norm.
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We call norm-complete vector lattice a set V, endowed with
operations +,∨,∧, {λ · −}λ∈R, 0, 1, that satisfies the previous
properties, i.e., V is a vector lattice, V is archimedean, 1 is a
strong unit, and V is norm-complete.

C(X,R) is a norm-complete vector lattice.
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Is it possible to recover the space X from the structure of
norm-complete vector lattice of C(X,R)?

Yes.
Idea: each element x ∈ X gives rise to a function

evx : C(X,R)→ R
f 7→ f (x).

For a norm-complete vector lattice V, we set

Max(V) := {f : V → R | f respects +,∨,∧, {λ · −}λ∈R, 0, 1}

We endow Max(V) with the subspace topology given by the
inclusion Max(V) ⊆ RV .

Max(V) is a compact Hausdorff space.
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CompHaus := category of compact Hausdorff spaces;
morphisms: continuous functions.

ComplVectLatt := category of norm-complete vector lattices;
morphisms: functions that preserve

+,∨,∧, {λ · −}λ∈R, 0, 1.
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Functors:

C(−,R) : CompHausop → ComplVectLatt

and
Max : ComplVectLatt→ CompHausop.

Theorem (Stone-Gelfand duality)
C(−,R) and Max are quasi-inverses.

CompHausop ∼= ComplVectLatt.

Main contributors: Banaschewski, Gelfand, Kakutani,
Neumark, Yosida.
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CompHausop ∼= ComplVectLatt.

Stone-Gelfand duality can be seen in two ways:
1. Representation of norm-complete vector lattices as C(X,R);
2. CompHaus as the dual of a class of finitary algebras

(ComplVectLatt).

Function symbols: +,∨,∧, {λ · −}λ∈R, 0, 1.

Not elementary:
(Unit property)

For all f , there exists n ∈ N s.t. |f | 6 n · 1.
(Archimedean property)

For all f , g such that f > 0 and g > 0, we have:
if, for all n ∈ N, nf 6 g, then f = 0.
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CompHaus as dual of an infinitary variety

C(X, [0, 1]) := {f : X → [0, 1] | f is continuous}.

 CompHausop ∼= variety of (infinitary) algebras ∆.

Operations: continuous functions [0, 1]I → [0, 1]
(depend on at most countably many coordinates).

Primitive operations: ⊕,¬, 0, δ
x ⊕ y := min{x + y, 1}.

¬x := 1− x.
0 ∈ [0, 1].

δ(x1, x2, . . . ) :=
∑∞

n=1
xn
2n .

(Duskin, Isbell, Marra, Reggio)
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CompHausop ∼= ComplVectLatt ∼= ∆
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CompHausop ∼= ComplVectLatt ∼= ∆,

What if we replace the linear structure of norm-complete
vector lattices with a weaker one?: structure of abelian group.

(Category of spaces)op ?∼= Compl`Groups
?∼= Variety
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Given q ∈ R, the additive subgroup of R generated by {q, 1} is

if q ∈ Q, n = den(q) 
1
n
Z;

if q ∈ R \Q dense subset of R.

The topological closure 〈q, 1〉 of the additive subgroup

generated by {q, 1} is

if q ∈ Q, n := den(q) 
1
n
Z;

if q ∈ R \Q R.
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Cden([0, 1],R) :={
f : [0, 1]→ R | f is continuous,∀x ∈ [0, 1] f (x) ∈ 〈x, 1〉

}
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Which operations can we define on Cden([0, 1],R)?

Here some of them.
1. Pointwise sum +.
2. Supremum, or pointwise maximum ∨.
3. Infimum, or pointwise minimum ∧.
4. The pointwise opposite −.
5. The constant function 0.
6. The constant function 1.
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Which properties are satisfied by Cden([0, 1],R), endowed with
these operations?

Given a set G, endowed with operations +,∨,∧,−, 0, 1, we say
that...

1. ... G is an abelian lattice-ordered group, if
1.1 〈G, 0,+,−〉 is an abelian group;
1.2 〈G,∨,∧〉 is a distributive lattice;
1.3 the order is translation invariant, i.e., for all f , g, h ∈ G,

f 6 g ⇒ f + h 6 g + h.
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2. ... G is archimedean, if

for all f , g ∈ G such that f > 0 and g > 0, we have:

if, for all n ∈ N, nf 6 g, then f = 0.
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3. ... 1 is a strong unit, if

for all f ∈ G, there exists n ∈ N s.t. −n1 6 f 6 n1,
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4. ... G is norm-complete, if defining the “supremum norm” as

‖f ‖ := inf

{
p
q
∈ Q+ | −p1 6 qf 6 p1

}
,

G is complete in the metric d(f , g) := ‖f − g‖ induced by
this norm.
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We call norm-complete `-group a set G, endowed with operations
+,∨,∧,−, 0, 1, that satisfies the previous properties, i.e., G is an
abelian lattice-ordered group, G is archimedean, 1 is a strong
unit, and G is norm-complete.

Cden([0, 1],R) is a norm-complete `-group.

Compl`Groups := category of norm-complete `-groups;
morphisms: functions that preserve

+,∨,∧,−, 0, 1.

(Category of spaces)op ?∼= Compl`Groups
?∼= Variety

31/36



Part I: Classical Stone-Gelfand duality Part II: Stone-Gelfand duality for groups

The category of spaces
den : [0, 1]→ N

q 7→ den(q) :=

{
denominator of q if q ∈ Q
0 otherwise

Definition
An a-normal space (X, ζ) is a compact Hausdorff space X,
endowed with a function ζ : X → N such that

1. ∀n ∈ N, ζ−1[div(n)] is closed;

2. ∀A,B ⊆ X closed and disjoint, ∃U,V open disjoint
neighbourhoods of A and B s.t. ∀x ∈ X \ (U ∪ V), ζ(x) = 0.
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Given (X, ζ) and (X′, ζ ′) a-normal spaces, a morphism from
(X, ζ) to (X′, ζ ′) is a continuous function f : X → X′ that
“respects the denominators”:

for any x ∈ X, ζ ′(f (x)) divides ζ(x).

Example:
f : ([0, 1], den)→ ([0, 1], den)

f
(

1
4

)
∈
{

0, 1
4
,
1
2
,
3
4
, 1
}
.

Theorem
The category of norm-complete `-groups is dually equivalent to the
category of a-normal spaces.

a-Normalop∼=Compl`Groups
?∼= Variety
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The variety

Theorem
The category of norm-complete `-groups is equivalent to a variety of
(infinitary) algebras.
This variety is denoted with CMV. The objects are
“norm-complete MV-algebras”.
Operations: continuous functions [0, 1]I → [0, 1] that “respect
the denominators”.
Primitive operations: ⊕,¬, 0, γ.
γ : [0, 1]N → [0, 1] is a function that calculates the limit of
“quickly converging” sequences.

a-Normalop∼=Compl`Groups ∼= CMV
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Conclusions

CompHausop ∼= ComplVectLatt ∼= ∆

a-Normalop ∼= Compl`Groups ∼= CMV
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Thank you for your attention.
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