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Stone duality:
Stone®P = Boole

Two ways of reading it.
1. Representation of Boolean algebras (as algebras of sets).
2. Stone is the dual of a variety of finitary algebras.

Variety of algebras: category of T-algebras (where 7 is a set of
function symbols) satisfying a certain set of equations.

Vx y(x) = n(x).

Finitary algebras: every primitive operation has finite arity.
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CompHaus := category of compact Hausdorff spaces;

morphisms: continuous functions.

CompHaus®P = ?

Is CompHaus®? equivalent to...
» ... avariety of finitary algebras? No

» ... aclass of finitary algebras? Yes (Stone-Gelfand
duality)

» ... an elementary class? Open question

» ... avariety of (possibly infinitary) algebras? Yes
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Given a Stone space S, the Boolean algebra associated to S is
{A C S| Aisclopen},
or, equivalently (taking charateristic functions),

{f: S—{0,1} | f is continuous}.
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The space
{f: S§—{0,1} | S is continuous}

is closed under every continuous function {0,1}/ — {0,1} (I a
set). For example
vi{0,1}* = {0,1};
A+ {0,137 = {0,1};
-:{0,1} — {0,1};
0: {0,1}" = {0,1};
1: {0,1}° = {0,1}.
1. A function {0,1}! — {0, 1} is continuous if, and only if, it
depends only on finitely many coordinates.

2. Functional completeness: every continuous function
{0,1} — {0,1} is obtained from the projection functions
72 {0, 1} — {0,1} by composition with \VV, A, =,0, 1.
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Given a compact Hausdorff space X, the continuous functions
X — {0,1} “are not enough”.

Example
0,1} = {0,1}.

They don’t separate points, they forget too much about the
structure of [0, 1].
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C(X,[0,1]) = {f: X = [0,1] | f is continuous}.

Operations: continuous functions [0, 1] — [0, 1]
(depend on at most countably many coordinates).

~+ CompHaus®? = variety of (infinitary) algebras A.

C(X,R) = {f: X — R | f is continuous}.

~ Stone-Gelfand duality.
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STONE-GELFAND DUALITY

Given X a compact Hausdorff space, which operations can we
define on C(X,R)?

Here some of them.

1. Pointwise sum +.
Supremum, or pointwise maximum V.
Infimum, or pointwise minimum A.
For each A € R, the scalar multiplication A - —.
The constant function 0.

o Ul WP

The constant function 1.

These operations on C(X, R) are “enough” in order to capture
the structure of C(X,R) and to recover X from C(X, R).
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Which properties are satisfied by C(X, R), endowed with these
operations?

Given a set V, endowed with operations +, V, A, {\ - —}aer, 0,1,
we say that...

1. ... Vis a vector lattice, if
1.1 (V,0,4,{X- —}xer) is a vector space;
1.2 (V,V,A) is a distributive lattice;
1.3 the order is translation invariant, i.e., forallf,g,h € V,
f<g=f+h<g+h

1.4 the order is positively homogeneous, i.e., for all A € R, for all

f.geV,
fg=Af<Ag
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2. ... Vis archimedean, if

forallf,g € V such thatf > 0 and g > 0, we have:
if, foralln e N,n-f < g, thenf = 0.
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3. ... 1is a strong unit, if

forallf € V, thereexistsn € Ns.it. —n-1<f <n-1,
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4. ... V is norm-complete if, defining the “supremum norm” as
Ifl| = inf{A e RY | =XA-1<f <A1},

V is complete in the metric induced by this norm.
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We call norm-complete vector lattice a set V, endowed with
operations +, V, A, {\ - —}xer, 0, 1, that satisfies the previous
properties, i.e., V is a vector lattice, V is archimedean, 1 is a
strong unit, and V is norm-complete.

C(X,R) is a norm-complete vector lattice.
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Is it possible to recover the space X from the structure of
norm-complete vector lattice of C(X,R)?

Yes.
Idea: each element x € X gives rise to a function

evy: C(X,R) =R
f=f).

For a norm-complete vector lattice V, we set
Max(V) = {f: V — R | f respects +, V, A, {\ - —}xer,0,1}

We endow Max (V') with the subspace topology given by the
inclusion Max(V) C RV.

Max(V) is a compact Hausdorff space.
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CompHaus := category of compact Hausdorff spaces;

morphisms: continuous functions.

ComplVectlLatt = category of norm-complete vector lattices;
morphisms: functions that preserve
+7 \/7 /\7 {)\ . _})\ER7 O? 1
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Functors:
C(—,R): CompHaus®? — ComplVectlLatt

and
Max: ComplVectLatt — CompHaus®F.

Theorem (Stone-Gelfand duality)
C(—,R) and Max are quasi-inverses.

CompHaus® = ComplVectLatt.

Main contributors: Banaschewski, Gelfand, Kakutani,
Neumark, Yosida.
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CompHaus®® = ComplVectLatt.

Stone-Gelfand duality can be seen in two ways:
1. Representation of norm-complete vector lattices as C(X, R);

2. CompHaus as the dual of a class of finitary algebras
(ComplVectLatt).

Function symbols: +,V, A, {\ - =} er,0, 1.

Not elementary:
(Unit property)
For all f, there exists n € Ns.t. [f| <n-1.

(Archimedean property)
For all f, g such that f > 0 and g > 0, we have:
if, foralln € N, nf < g, thenf =0.
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CompHaus AS DUAL OF AN INFINITARY VARIETY

C(X,[0,1]) ={f: X = [0,1] | f is continuous}.

Opf‘\J

~» CompHaus variety of (infinitary) algebras A.

Operations: continuous functions [0,1]' — [0, 1]
(depend on at most countably many coordinates).

Primitive operations: ®,—,0,¢
x @y = min{x +y,1}.
-x=1—x.

0 € 0,1].
5(3(1,9(?2, .. ) = Z;o:l %

(Duskin, Isbell, Marra, Reggio)
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CompHaus®® = ComplVectLatt = A
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CompHaus®? = ComplVectLatt = A,

What if we replace the linear structure of norm-complete

vector lattices with a weaker one?: structure of abelian group.

? ?

(Category of spaces)™ = Compl{Groups = Variety

23/36



Parr I: CrassICAL STONE-GELFAND DUALITY Parr II: STONE-GELFAND DUALITY FOR GROUPS
0000000000000 000000 00e000000000000

Given g € R, the additive subgroup of R generated by {g,1} is

ifg e Q, n=den(q) ~ %Z;

ifge R\ Q ~ dense subset of R.
The topological closure (g, 1) of the additive subgroup
generated by {g,1} is
. 1
ifge Q, n:=den(q) ~ EZ;
ifge R\ Q ~ R.

24/36



ParT I: CLASSICAL STONE-GELFAND DUALITY ParT II: STONE-GELFAND DUALITY FOR GROUPS
0000000000000000000 000®00000000000

Cden([0,1],R) :=
{f: [0,1] — R | f is continuous, Vx € [0,1] f(x) € (x,1>}

1

1’* <

L.

=

25/36



Parr I: CrassICAL STONE-GELFAND DUALITY Parr II: STONE-GELFAND DUALITY FOR GROUPS
0000000000000 000000 0000@0000000000

Which operations can we define on Cgen ([0, 1], R)?

Here some of them.

1. Pointwise sum +.
Supremum, or pointwise maximum V.
Infimum, or pointwise minimum A.
The pointwise opposite —.
The constant function 0.

ARSI

The constant function 1.
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Which properties are satisfied by Cgen([0, 1], R), endowed with
these operations?

Given a set G, endowed with operations +, vV, A, —, 0,1, we say
that...
1. ... Gis an abelian lattice-ordered group, if
1.1 (G,0,+,—) is an abelian group;
1.2 (G, V, A) is a distributive lattice;
1.3 the order is translation invariant, i.e., for allf,g,h € G,

f<g=f+h<g+h
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2. ... G is archimedean, if

forallf,g € G such that f

> 0and g > 0, we have:
if, foralln € N, nf < g, thenf =0.
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3. ... 1is a strong unit, if

forallf € G, thereexistsn € Ns.t. —nl < f <nl,
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4. ... G is norm-complete, if defining the “supremum norm” as

Il = inf{Z cQt | pl<af < pl},

G is complete in the metric d(f,g) = ||f — g|| induced by
this norm.
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We call norm-complete {-group a set G, endowed with operations
+,V, A, —, 0,1, that satisfies the previous properties, i.e., G is an
abelian lattice-ordered group, G is archimedean, 1 is a strong
unit, and G is norm-complete.

Cden([0, 1], R) is a norm-complete ¢-group.

Compl/Groups := category of norm-complete /-groups;
morphisms: functions that preserve
+,V, A, —,0,1.

? ?

(Category of spaces)’? 22 Compl¢Groups = Variety
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THE CATEGORY OF SPACES
den: [0,1] - N

q — den(q) = {

denominator of g ifg € Q
0 otherwise
Definition
An a-normal space (X, () is a compact Hausdorff space X,
endowed with a function ¢: X — N such that
1. Vn € N, ¢~[div(n)] is closed;
do (4]

L L 3 4
° 3 1 3

2. VA, B C X closed and disjoint, 3U, V open disjoint
neighbourhoods of Aand Bs.t. Vx € X\ (UU V), ((x) =0.

. T -0 "
7 UTRERTV TNy
‘ W \
A i
{ 4 i PN/
;
> \v// \\v//
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Given (X, ¢) and (X', (') a-normal spaces, a morphism from
(X, ¢) to (X', (') is a continuous function f: X — X’ that
“respects the denominators”:

for any x € X, ¢'(f(x)) divides ((x).

Example:
f:([0,1],den) — ([0,1],den)

%
1 113
(3 efosnin)
Theorem
The category of norm-complete (-groups is dually equivalent to the
category of a-normal spaces.

?
a-Normal®® = Compl{Groups = Variety
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THE VARIETY

Theorem

The category of norm-complete {-groups is equivalent to a variety of
(infinitary) algebras.

This variety is denoted with CMV. The objects are
“norm-complete MV-algebras”.

Operations: continuous functions [0, 1]/ — [0, 1] that “respect
the denominators”.

Primitive operations: @, —,0, .

v:[0,1]N — [0, 1] is a function that calculates the limit of
“quickly converging” sequences.

a-Normal®? = Compl/Groups = CMV
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CONCLUSIONS

CompHaus®P

[

a-Normal®P

I

2

1%
B>

ComplVectlLatt

[ |

CompllGroups > CMV
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Thank you for your attention.
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