Stone-Gelfand duality for groups

Marco Abbadini Dipartimento di Matematica *Federigo Enriques* University of Milan, Italy marco.abbadini@unimi.it

Joint work with Vincenzo Marra and Luca Spada

PhDs in Logic XI Bern, Switzerland April 25, 2019

Part I: Classical Stone-Gelfand duality

Part II: Stone-Gelfand duality for groups

Overview

Part I: Classical Stone-Gelfand duality

Part II: Stone-Gelfand duality for groups

Stone duality:

 $\mathsf{Stone}^{op} \cong \mathsf{Boole}$

Two ways of reading it.

1. Representation of Boolean algebras (as algebras of sets).

2. Stone is the dual of a variety of finitary algebras.

Variety of algebras: category of τ -algebras (where τ is a set of function symbols) satisfying a certain set of equations.

$$\forall \underline{x} \quad \gamma(\underline{x}) = \eta(\underline{x}).$$

Finitary algebras: every primitive operation has finite arity.

CompHaus := category of compact Hausdorff spaces; morphisms: continuous functions.

 $\mathsf{CompHaus}^{op}\cong \ ?$

Is CompHaus^{op} equivalent to...

- ► ... a variety of finitary algebras? No
- ... a class of finitary algebras? Yes (Stone-Gelfand duality)
- ► ... an elementary class? Open question
- ... a variety of (possibly infinitary) algebras? Yes

Given a Stone space *S*, the Boolean algebra associated to *S* is

 $\{A \subseteq S \mid A \text{ is clopen}\},\$

or, equivalently (taking charateristic functions),

 $\{f: S \to \{0,1\} \mid f \text{ is continuous}\}.$

The space

 $\{f \colon S \to \{0,1\} \mid S \text{ is continuous}\}$

is closed under every continuous function $\{0,1\}^I \rightarrow \{0,1\}$ (*I* a set). For example

$$\begin{split} & \lor : \{0,1\}^2 \to \{0,1\}; \\ & \land : \{0,1\}^2 \to \{0,1\}; \\ & \neg : \{0,1\} \to \{0,1\}; \\ & 0 : \{0,1\}^0 \to \{0,1\}; \\ & 1 : \{0,1\}^0 \to \{0,1\}. \end{split}$$

- 1. A function $\{0,1\}^I \rightarrow \{0,1\}$ is continuous if, and only if, it depends only on finitely many coordinates.
- 2. Functional completeness: every continuous function $\{0,1\}^I \rightarrow \{0,1\}$ is obtained from the projection functions $\pi_i \colon \{0,1\}^I \rightarrow \{0,1\}$ by composition with $\lor, \land, \neg, 0, 1$.

Given a compact Hausdorff space *X*, the continuous functions $X \rightarrow \{0, \overline{1}\}$ "are not enough".

Example $[0,1] \rightarrow \{0,1\}.$

They don't separate points, they forget too much about the structure of [0, 1].

 $C(X, [0, 1]) \coloneqq \{f \colon X \to [0, 1] \mid f \text{ is continuous}\}.$

Operations: continuous functions $[0,1]^I \rightarrow [0,1]$ (depend on at most countably many coordinates).

 \rightsquigarrow CompHaus^{op} \cong variety of (infinitary) algebras Δ .

 $C(X, \mathbb{R}) \coloneqq \{f \colon X \to \mathbb{R} \mid f \text{ is continuous}\}.$ \$\sim Stone-Gelfand duality.

STONE-GELFAND DUALITY

Given *X* a compact Hausdorff space, which operations can we define on $C(X, \mathbb{R})$?

Here some of them.

- 1. Pointwise sum +.
- 2. Supremum, or pointwise maximum \lor .
- 3. Infimum, or pointwise minimum \wedge .
- 4. For each $\lambda \in \mathbb{R}$, the scalar multiplication $\lambda \cdot -$.
- 5. The constant function 0.
- 6. The constant function 1.

These operations on $C(X, \mathbb{R})$ are "enough" in order to capture the structure of $C(X, \mathbb{R})$ and to recover X from $C(X, \mathbb{R})$.

Which properties are satisfied by $C(X, \mathbb{R})$, endowed with these operations?

Given a set *V*, endowed with operations $+, \lor, \land, \{\lambda \cdot -\}_{\lambda \in \mathbb{R}}, 0, 1$, we say that...

- 1. ... *V* is a vector lattice, if
 - 1.1 $\langle V, 0, +, \{\lambda \cdot -\}_{\lambda \in \mathbb{R}} \rangle$ is a vector space;
 - 1.2 $\langle V, \lor, \land \rangle$ is a distributive lattice;
 - 1.3 the order is *translation invariant*, i.e., for all $f, g, h \in V$,

$$f \leqslant g \Rightarrow f + h \leqslant g + h;$$

1.4 the order is *positively homogeneous*, i.e., for all $\lambda \in \mathbb{R}^+$, for all $f, g \in V$,

$$f \leqslant g \Rightarrow \lambda \cdot f \leqslant \lambda \cdot g.$$

2. ... V is archimedean, if

for all $f, g \in V$ such that $f \ge 0$ and $g \ge 0$, we have: if, for all $n \in \mathbb{N}$, $n \cdot f \le g$, then f = 0.

3. ... 1 is a *strong unit*, if

for all $f \in V$, there exists $n \in \mathbb{N}$ s.t. $-n \cdot 1 \leq f \leq n \cdot 1$,

4. ... *V* is *norm-complete* if, defining the "supremum norm" as $\|f\| \coloneqq \inf\{\lambda \in \mathbb{R}^+ \mid -\lambda \cdot 1 \leqslant f \leqslant \lambda \cdot 1\},\$

V is complete in the metric induced by this norm.

We call *norm-complete vector lattice* a set *V*, endowed with operations $+, \lor, \land, \{\lambda \cdot -\}_{\lambda \in \mathbb{R}}, 0, 1$, that satisfies the previous properties, i.e., *V* is a vector lattice, *V* is archimedean, 1 is a strong unit, and *V* is norm-complete.

 $C(X, \mathbb{R})$ is a norm-complete vector lattice.

Is it possible to recover the space X from the structure of norm-complete vector lattice of $C(X, \mathbb{R})$?

Yes.

Idea: each element $x \in X$ gives rise to a function

$$\operatorname{ev}_x \colon C(X, \mathbb{R}) \to \mathbb{R}$$

 $f \mapsto f(x).$

For a norm-complete vector lattice *V*, we set

 $Max(V) \coloneqq \{f \colon V \to \mathbb{R} \mid f \text{ respects } +, \lor, \land, \{\lambda \cdot -\}_{\lambda \in \mathbb{R}}, 0, 1\}$

We endow Max(V) with the subspace topology given by the inclusion $Max(V) \subseteq \mathbb{R}^V$.

Max(V) is a compact Hausdorff space.

CompHaus := category of compact Hausdorff spaces; morphisms: continuous functions.

$$\begin{split} \textbf{ComplVectLatt} \coloneqq \textbf{category of norm-complete vector lattices;} \\ \textbf{morphisms: functions that preserve} \\ +, \lor, \land, \{\lambda \cdot -\}_{\lambda \in \mathbb{R}}, 0, 1. \end{split}$$

Functors:

$$C(-,\mathbb{R})$$
: CompHaus^{op} \rightarrow ComplVectLatt

and

$$Max: ComplVectLatt \rightarrow CompHaus^{op}$$

Theorem (Stone-Gelfand duality) $C(-,\mathbb{R})$ and Max are quasi-inverses.

 $\mathsf{CompHaus}^{op} \cong \mathsf{ComplVectLatt}.$

Main contributors: Banaschewski, Gelfand, Kakutani, Neumark, Yosida.

 $CompHaus^{op} \cong ComplVectLatt.$

Stone-Gelfand duality can be seen in two ways:

- 1. Representation of norm-complete vector lattices as $C(X, \mathbb{R})$;
- 2. CompHaus as the dual of a class of finitary algebras (ComplVectLatt).

Function symbols: $+, \lor, \land, \{\lambda \cdot -\}_{\lambda \in \mathbb{R}}, 0, 1.$

Not elementary:

(Unit property) For all *f*, there exists $n \in \mathbb{N}$ s.t. $|f| \leq n \cdot 1$. (Archimedean property) For all *f*, *g* such that $f \ge 0$ and $g \ge 0$, we have: if, for all $n \in \mathbb{N}$, $nf \leq g$, then f = 0.

CompHaus as dual of an infinitary variety

$$C(X, [0,1]) \coloneqq \{f \colon X \to [0,1] \mid f \text{ is continuous}\}.$$

 \rightsquigarrow CompHaus^{op} \cong variety of (infinitary) algebras Δ .

Operations: continuous functions $[0, 1]^I \rightarrow [0, 1]$ (depend on at most countably many coordinates).

Primitive operations:
$$\oplus$$
, \neg , 0, δ
 $x \oplus y \coloneqq \min\{x + y, 1\}.$
 $\neg x \coloneqq 1 - x.$
 $0 \in [0, 1].$
 $\delta(x_1, x_2, \dots) \coloneqq \sum_{n=1}^{\infty} \frac{x_n}{2^n}.$

(Duskin, Isbell, Marra, Reggio)

$\mathsf{CompHaus}^{op} \cong \mathsf{ComplVectLatt} \cong \Delta$

Part I: Classical Stone-Gelfand duality

Part II: Stone-Gelfand duality for groups

$\mathsf{CompHaus}^{\mathsf{op}} \cong \mathsf{ComplVectLatt} \cong \Delta,$

What if we replace the linear structure of norm-complete vector lattices with a weaker one?: structure of abelian group.

 $(Category \text{ of spaces})^{op} \stackrel{?}{\cong} Compl \ell Groups \stackrel{?}{\cong} Variety$

1

1

Given $q \in \mathbb{R}$, the additive subgroup of \mathbb{R} generated by $\{q, 1\}$ is

$$\begin{array}{ll} \text{if } q \in \mathbb{Q}, & n = \mathtt{den}(q) \rightsquigarrow & & \frac{1}{n}\mathbb{Z}; \\ & \text{if } q \in \mathbb{R} \setminus \mathbb{Q} \rightsquigarrow & & \mathtt{dense \ subset \ of \ }\mathbb{R}. \end{array}$$

The topological closure $\overline{\langle q, 1 \rangle}$ of the additive subgroup

generated by $\{q, 1\}$ is

$$\begin{array}{ll} \text{if } q \in \mathbb{Q}, & n \coloneqq \mathtt{den}(q) \rightsquigarrow & & \frac{1}{n}\mathbb{Z}; \\ & \text{if } q \in \mathbb{R} \setminus \mathbb{Q} \rightsquigarrow & & \mathbb{R}. \end{array}$$

Which operations can we define on $C_{den}([0,1],\mathbb{R})$?

Here some of them.

- 1. Pointwise sum +.
- 2. Supremum, or pointwise maximum \lor .
- 3. Infimum, or pointwise minimum \wedge .
- 4. The pointwise opposite –.
- 5. The constant function 0.
- 6. The constant function 1.

Which properties are satisfied by $C_{den}([0, 1], \mathbb{R})$, endowed with these operations?

Given a set *G*, endowed with operations $+, \lor, \land, -, 0, 1$, we say that...

- 1. ... *G* is an *abelian lattice-ordered group*, if
 - 1.1 $\langle G, 0, +, \rangle$ is an abelian group;
 - 1.2 $\langle G, \lor, \land \rangle$ is a distributive lattice;
 - 1.3 the order is translation invariant, i.e., for all $f, g, h \in G$,

$$f\leqslant g \Rightarrow f+h\leqslant g+h.$$

2. ... *G* is *archimedean*, if for all $f, g \in G$ such that $f \ge 0$ and $g \ge 0$, we have: if, for all $n \in \mathbb{N}$, $nf \le g$, then f = 0.

3. ... 1 is a *strong unit*, if

for all $f \in G$, there exists $n \in \mathbb{N}$ s.t. $-n1 \leq f \leq n1$,

4. ... *G* is *norm-complete*, if defining the "supremum norm" as

$$\|f\| \coloneqq \inf \left\{ \frac{p}{q} \in \mathbb{Q}^+ \mid -p1 \leqslant qf \leqslant p1 \right\},$$

G is complete in the metric $d(f,g) \coloneqq ||f - g||$ induced by this norm.

We call *norm-complete* ℓ -group a set G, endowed with operations $+, \lor, \land, -, 0, 1$, that satisfies the previous properties, i.e., G is an abelian lattice-ordered group, G is archimedean, 1 is a strong unit, and G is norm-complete.

 $C_{\text{den}}([0,1],\mathbb{R})$ is a norm-complete ℓ -group.

Compl ℓ Groups := category of norm-complete ℓ -groups; morphisms: functions that preserve +, \lor , \land , -, 0, 1.

 $(Category of spaces)^{op} \stackrel{?}{\cong} Compl \ell Groups \stackrel{?}{\cong} Variety$

The category of spaces

$$\begin{split} \mathtt{den} \colon [0,1] \to \mathbb{N} \\ q \mapsto \mathtt{den}(q) \coloneqq \begin{cases} \mathtt{denominator} \text{ of } q & \mathtt{if} \ q \in \mathbb{Q} \\ 0 & \mathtt{otherwise} \end{cases} \end{split}$$

Definition

An *a-normal space* (X, ζ) is a compact Hausdorff space X, endowed with a function $\zeta \colon X \to \mathbb{N}$ such that

1.
$$\forall n \in \mathbb{N}, \zeta^{-1}[\operatorname{div}(n)] \text{ is closed};$$

den
$$[div(4)] = 0 + \frac{1}{4} + \frac{1}{2} + \frac{3}{4} + 1$$

2. $\forall A, B \subseteq X$ closed and disjoint, $\exists U, V$ open disjoint neighbourhoods of *A* and *B* s.t. $\forall x \in X \setminus (U \cup V), \zeta(x) = 0$.

Given (X, ζ) and (X', ζ') a-normal spaces, a *morphism* from (X, ζ) to (X', ζ') is a continuous function $f : X \to X'$ that "respects the denominators":

for any
$$x \in X$$
, $\zeta'(f(x))$ divides $\zeta(x)$.

Example:

$$f \colon ([0,1],\mathtt{den}) o ([0,1],\mathtt{den})$$
 $f\left(rac{1}{4}
ight) \in \left\{0,rac{1}{4},rac{1}{2},rac{3}{4},1
ight\}.$

Theorem

The category of norm-complete ℓ -groups is dually equivalent to the category of a-normal spaces.

a-Normal^{op}
$$\cong$$
 Compl ℓ Groups $\stackrel{?}{\cong}$ Variety

The variety

Theorem

The category of norm-complete ℓ -groups is equivalent to a variety of (infinitary) algebras.

This variety is denoted with CMV. The objects are

"norm-complete MV-algebras".

Operations: continuous functions $[0,1]^I \rightarrow [0,1]$ that "respect the denominators".

Primitive operations: \oplus , \neg , 0, γ .

 $\gamma \colon [0,1]^{\mathbb{N}} \to [0,1]$ is a function that calculates the limit of "quickly converging" sequences.

$\mathsf{a}\text{-}\mathsf{Normal}^{op} \cong \mathsf{Compl}\ell\mathsf{Groups} \cong \mathsf{CMV}$

Conclusions

Thank you for your attention.