ESERCIZI TUTORATO ALGEBRA 2 8 NOVEMBRE 2019 - LEZIONE 4

MARCO ABBADINI

Esercizio 1 (Prova scritta, 26 Febbraio 2016, eserc. 1).

Sia G un gruppo finito. Determinare tutti i possibili omomorfismi di G in \mathbb{Z} .

Esercizio 2 (Prova scritta, 17 Luglio 2015, eserc. 1). Sia G un gruppo abeliano, e sia n un intero positivo. Si considerino gli insiemi $G_1 = \{g \in G : g^n = 1\}$, e $G_2 = \{g^n : g \in G\}$. Provare che G_1 e G_2 sono sottogruppi normali di G, e che $G/G_1 \simeq G_2$.

Esercizio 3 (Prima prova intermedia, 19 Novembre 2013, eserc. 3).

Sia ϕ un omomorfismo definito su un gruppo finito G, e sia H un sottogruppo di G. Provare che:

- (a) $|\phi(G):\phi(H)|$ divide |G:H|.
- (b) $|\phi(H)|$ divide |H|.

Esercizio 4 (Prova scritta 17 Giugno 2015, eserc. 3). Sia N un sottogruppo normale di un gruppo finito G. Mostrare che se H è un sottogruppo di G di ordine coprimo con |G/N|, allora $H \leq N$.

Esercizio 5 (Prova scritta, 28 Aprile 2015, eserc. 1).

Sia G un gruppo finito e siano H e K sottogruppi di G tali che $|G|<|H|^2$ e $|G|<|K|^2$. Provare che si ha $H\cap K\neq 1$.

Esercizio 6. Definiamo

$$\begin{split} H &\coloneqq \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \ : \ a,b,d \in \mathbb{R}, \ ad \neq 0 \right\}, \\ L &\coloneqq \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \ : \ b \in \mathbb{R} \right\}. \end{split}$$

- (a) Provare che H ed L sono sottogruppi di $GL(2,\mathbb{R})$.
- (b) L è normale in $GL(2,\mathbb{R})$?
- (c) H è normale in $GL(2,\mathbb{R})$?
- (d) Provare che L è normale in H.
- (e) Provare che L è isomorfo a $(\mathbb{R}, +)$.
- (f) Determinare un insieme di rappresentanti dei laterali di L in H, e, per ogni rappresentante, descrivere il laterale corrispondente. Dimostrare che H/L è isomorfo a $\mathbb{R}^* \times \mathbb{R}^*$, dove $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, e l'operazione di gruppo su $\mathbb{R}^* \times \mathbb{R}^*$ è definita dal prodotto coordinata per coordinata: $(x_1, y_1) \cdot (x_2, y_2) := (x_1 x_2, y_1 y_2)$. H/L è abeliano? È ciclico?