ESERCIZI TUTORATO ALGEBRA 2 29 NOVEMBRE 2019 - LEZIONE 6

MARCO ABBADINI

- Esercizio 1. (a) Esibire un insieme Ω_2 di 2 elementi ed un'azione transitiva del gruppo simmetrico S_2 su Ω_2 . Descrivere il nucleo dell'azione e stabilire se l'azione è fedele. Per ogni elemento $\omega \in \Omega_2$, determinare lo stabilizzatore di ω .
- (b) Esibire un insieme Ω_1 di 1 elemento ed un'azione transitiva di S_2 su Ω_1 . Descrivere il nucleo dell'azione e stabilire se l'azione è fedele. Per ogni elemento $\omega \in \Omega_1$, determinare lo stabilizzatore di ω .
- (c) Esiste un insieme Ω di 3 elementi ed un'azione transitiva di S_2 su $\Omega?$
- (d) Mostrare che esiste un insieme Ω di 3 elementi ed un'azione del gruppo S_2 su Ω che abbia esattamente 2 orbite. Stabilire il nucleo di tale azione, stabilire se è fedele, stabilire se esiste un elemento di Ω il cui stabilizzatore è S_2 e stabilire se esiste un elemento di Ω il cui stabilizzatore è il sottogruppo banale di S_2 .
- Esercizio 2. (a) Per quali interi positivi n esiste un insieme Ω di cardinalità n ed un'azione transitiva del gruppo additivo (\mathbb{Z}_6 , +) su Ω ? Per ciascuno di questi n si determini il nucleo di una tale azione, e lo stabilizzatore di ogni elemento.
- (b) Esiste un insieme Ω di 5 elementi ed un'azione di \mathbb{Z}_6 su Ω con esattamente 2 orbite? Se sì, stabilire se l'azione è fedele, altrimenti stabilire se l'enunciato vale con \mathbb{Z}_5 al posto di \mathbb{Z}_6 .

Esercizio 3 (Seconda prova intermedia, 21 Dicembre 2017, eserc. 3).

Sia
$$A = \{1, 2, 3\}$$
 e $\Omega = A^A = \{f \mid f : A \to A\}.$

(a) Definiamo per ogni $(\alpha,\beta)\in S_3\times S_3$ e ogni $f\in\Omega,$

$$f \cdot (\alpha, \beta) = \alpha^{-1} f \beta$$

- (composizione di funzioni effettuata da sinistra verso destra). Si dimostri che questo definisce un'azione del gruppo $G = S_3 \times S_3$ su Ω .
- (b) Si determini lo stabilizzatore in G dell'applicazione identica id_A e quello della funzione costante c_1 (definita da $c_1(x) = 1$ per ogni $x \in A$); si dica quanti elementi contengono le orbite di id_A e di c_1 .

1