LOGICA MATEMATICA A.A. 2021/2022

ESERCIZI SU ALGEBRE DI BOOLE

Esercizio 1.

- (a) Esiste un'algebra di Boole di 16 elementi?
- (b) È vero che, per ogni $n \in \mathbb{N}$, esiste un'algebra di Boole di cardinalità n?
- (c) Esiste un'algebra di Boole di cardinalità del continuo?
- (d) Esiste un'algebra di Boole di cardinalità numerabile?
- (e) Si mostri che, per ogni cardinale infinito $\kappa,$ esiste un'algebra di Boole di cardinalità $\kappa.^1$

Soluzione. (a) Sì. L'insieme delle parti di un insieme di quattro elementi.

- (b) No. Ad esempio, per n = 0 oppure per n = 3.
- (c) Sì. L'insieme delle parti di un insieme di cardinalità numerabile.
- (d) Sì. L'algebra dei finiti e cofiniti di un insieme numerabile.
- (e) Per ogni cardinale κ , si consideri l'algebra dei finiti e cofiniti di un insieme di cardinalità κ . Soluzione alternativa: si consideri l'algebra libera su κ generatori. Soluzione alternativa: si provi che esiste un'algebra di Boole numerabile e si applichi il teorema di Loweneim-Skolem.

Esercizio 2. Sia $n = p_1 \cdot \dots \cdot p_k \in \mathbb{N}$ prodotto di primi p_1, \dots, p_k distinti. Sia $D = \{m \in \mathbb{N} \mid m \text{ divide } n\}$. Per ogni $a \in D$, sia $\overline{a} := \frac{n}{a}$. $(D, \operatorname{mcd}, \operatorname{mcm}, \overline{}, 1, n)$ è un'algebra di Boole (non si richiede di dimostrarlo). Si trovi un insieme X ed un isomorfismo tra $\mathcal{P}(X)$ e D.

Soluzione. $X = \{p_1, \ldots, p_k\}.$

$$f \colon \mathcal{P}(X) \longrightarrow D$$
$$A \longmapsto \prod_{p \in A} p.$$

Esercizio 3. Mostrare che una catena di 3 elementi non è un'algebra di Boole.

Soluzione. L'elemento in mezzo alla catena non ha un complemento.

Esercizio 4. Sia X un insieme infinito². Sia

$$B := \{Y \subseteq X \mid Y \text{ è finito oppure cofinito}\}$$

("Y cofinito" vuol dire che $X \setminus Y$ è finito). Dimostrare che B è una sottalgebra dell'algebra di Boole di $\mathcal{P}(X)$. (B è chiamata algebra dei finiti e cofiniti.)

Esercizio 5.

Date: 10 novembre 2022.

¹Ne segue che ogni insieme infinito può essere dotato della struttura di algebra di Boole.

²L'ipotesi di infinitezza non è davvero necessaria.

- 9
- (a) Si esibisca un'algebra di Boole di 16 elementi.
- (b) Si esibisca un'algebra di Boole di cardinalità del continuo.
- (c) Si esibisca un'algebra di Boole di cardinalità numerabile.
- (d) È vero che, per ogni $n \in \mathbb{N}$, esiste un'algebra di Boole di cardinalità n?
- (e) Si mostri che, per ogni cardinale infinito κ , esiste un'algebra di Boole di cardinalità κ .
- (f) È vero che ogni insieme infinito può essere dotato della struttura di algebra di Boole?

Esercizio 6. Sia $\langle B, \wedge, \vee, \neg, 0, 1 \rangle$ un'algebra di Boole. Dimostrare che

$$\varphi \colon \langle B, \wedge, \vee, \neg, 0, 1 \rangle \longrightarrow \langle B, \vee, \wedge, \neg, 1, 0 \rangle$$
$$x \longmapsto \neg x$$

è isomorfismo di algebre di Boole (non è necessario dimostrare che $\langle B, \vee, \wedge, \neg, 1, 0 \rangle$ è un'algebra di Boole). È un'automorfismo?

Esercizio 7. (a) Trovare un esempio di poset non reticolo.

- (b) Trovare un esempio di reticolo limitato distributivo non complementato.
- (c) Trovare un esempio di reticolo distributivo non limitato.
- (d) Trovare un esempio di reticolo limitato complementato non distributivo.

Esercizio 8. Se un sottoinsieme B di un'algebra di Boole A contiene 0 e 1 ed è chiuso per \land e \lor , ne segue che B è una sottalgebra di A?

Soluzione. No. Si consideri l'algebra di Boole di quattro elementi e si prenda un sottoinsieme di tre elementi che contenga 0 e 1.

Esercizio 9. Dare un esempio di sottalgebra B di un'algebra di Boole A e un sottoinsieme E di B tale che E ha un sup in A ma non in B.

Esercizio 10. Dare un esempio di sottalgebra B di un'algebra di Boole A e un sottoinsieme E di B tale che E ha un sup in B ma non in A.

1. Omomorfismi, congruenze, filtri e ultrafiltri

Esercizio 11. Sia X un insieme, e sia Y un suo sottoinsieme.

(a) Si mostri che la funzione

$$\pi \colon \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$$

$$A \longmapsto A \cap Y$$

è un omomorfismo suriettivo di algebre di Boole. In
oltre, qual è il kernel di $r?\,$

(b) La funzione

$$\iota \colon \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$$

$$A \longmapsto A$$

è un omomorfismo di algebre di Boole?

Soluzione. (a) È chiaramente suriettivo. Mostriamo che è un omomorfismo. Ad esempio, mostriamo che π preserva \cap , 1, \neg .

$$\pi(A \cap B) = A \cap B \cap Y = (A \cap Y) \cap (B \cap Y) = \pi(A) \cap \pi(B).$$

$$\pi(X) = X \cap Y = Y$$

$$\pi(X \setminus A) = (X \setminus A) \cap Y = Y \setminus A.$$

Il kernel è $\{A \subseteq X \mid Y \subseteq A\}$.

(b) In generale ι non è un omomorfismo, perché se $Y \neq X$ non preserva 1 (e neanche \neg).

Esercizio 12. Si mostri che una funzione $f: A \to B$ tra algebre di Boole è un isomorfismo se e solo se è biettiva e per ogni $x, y \in A$ si ha $x \leq y$ sse $f(x) \leq f(y)$.

Soluzione. Supponiamo che $f: A \to B$ è un isomorfismo. Allora è biettiva. Inoltre, per ogni $x, y \in A$, abbiamo

$$x \leq y \iff x \wedge y = x \iff f(x \wedge y) = f(x) \iff f(x) \wedge f(y) = f(x) \iff f(x) \leq f(y).$$

(Se no, potevamo usare il fatto che ogni omomorfismo è monotono crescente, e quindi vale $x \leq y \Rightarrow f(x) \leq f(y)$, ed inoltre l'inversa g di f è un'omomorfismo, e perciò è monotona crescente, e perciò soddisfa l'implicazione opposta.)

Supponiamo che f è biettiva e per ogni $x, y \in A$ si ha $x \leq y$ sse $f(x) \leq f(y)$. Mostriamo che f preserva \vee . Siano $x, y \in A$. Dobbiamo mostrare che $f(x \vee y)$ è il minimo dei maggioranti di f(x) e f(y). Poiché f è monotona crescente, $f(x \vee y)$ è un maggiorante di f(x) e f(y). Sia z un maggiorante di f(x) e f(y). Esiste z' tale che f(z') = z. Allora $f(x) \le f(z')$ e perciò $x \le z'$. Analogamanete $y \le z'$. Perciò $x \vee y \leq z'$, e perciò $f(x \vee y) \leq f(z)$.

Esercizio 13. Si mostri che il kernel di un omomorfismo $f: A \to B$ di algebre di Boole è un filtro proprio se e solo se B non è un singoletto.

Esercizio 14. Siano $f,g:A\to B$ omomorfismi suriettivi di algebre di Boole tale che la congruenze $\equiv_f e \equiv_q \operatorname{su} A$ (definite da $x \equiv_f x' \operatorname{sse} f(x) = f(x') e da <math>x \equiv_q x'$ sse q(x) = q(x'), si veda Def. 3.45) coincidono. Segue che f e q sono uguali?

Soluzione. No. Si prendano sia A che B come la seguente algebra di Boole.

Si prenda f come l'identità e g come la mappa che manda \top in \top , a in b, b in a e \perp in \perp .

Esercizio 15. Sia X un insieme. Definisci la relazione \sim su $\mathcal{P}(X)$ come segue: $A \sim B$ se e solo se A e B differiscono su al più un insieme numerabile di elementi, ossia la differenza simmetrica

$$(A \cap (X \setminus B)) \cup ((X \setminus A) \cap B)$$

è al più numerabile. Si dimostri che questa relazione è una congruenza. Se X è numerabile, quanti elementi ha il quoziente $\mathcal{P}(X)/\sim$?

Esercizio 16. Una funzione $f: A \to B$ è detta monotona crescente se, per ogni $x, y \in A, x \leq y \text{ implica } f(x) \leq f(y).$

(a) Si stabilisca se la seguente affermazione è vera o falsa: Se $f: A \to B$ è una funzione monotona crescente tra algebre di Boole, allora f è un omomorfismo di algebre di Boole.

(b) Si stabilisca se la seguente frase è vera o falsa:

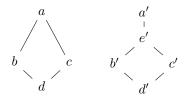
Se $f: A \to B$ è una funzione monotona crescente tra reticoli, allora per ogni $x, y \in A$ si ha $f(x \vee y) = f(x) \vee f(y)$ e $f(x \wedge y) = f(x) \wedge f(y)$.

(c) Si stabilisca se la seguente frase è vera o falsa:

Se $f: A \to B$ è una funzione monotona crescente tra algebre di Boole tale che f(0) = 0 e f(1) = 1, allora f è un omomorfismo di algebre di Boole.

Soluzione. (a) Falsa. Sia A l'algebra di Boole con un solo elemento. Sia B la catena di due elementi $\{0,1\}$. Si consideri la mappa che manda l'unico elemento di A in 0. Non è un omomorfismo perché non preserva 1.

(b) Falsa. Siano A e B, rispettivamente, i seguenti reticoli.



e sia f la mappa che manda a in a', b in b', c in c' e d in d'.

(c) Falsa. Si prendano sia A che B come la seguente algebra di Boole.

Sia f la mappa che manda 1 in 1, 0 in 0, a in a e b in a. f non è omomorfismo perché $f(a \lor b) = 1 \ne a = a \lor a = f(a) \lor f(b)$. (Questo poteva essere preso come controesempio anche per i due punti precedenti.)

Esercizio 17. Dimostra o confuta la seguente affermazione.

Siano A e B due algebre di Boole, e sia $f: A \to B$ un omomorfismo di algebre di Boole. Per ogni $x, y \in A$ si ha $x \leq y$ se e solo se $f(x) \leq f(y)$.

Soluzione. L'affermazione è falsa. Come controesempio, si prenda A come la seguente algebra di Boole.

e come B l'algebra di Boole singoletto. Sia $f: A \to B$ l'unica funzione da A a B. f è un omomorfismo. $f(1_A) \le f(0_A)$ ma $1_A \le 0_A$.

Esercizio 18. Sia $f: A \to B$ una funzione tra algebre di Boole che preserva \vee , \wedge , 0 e 1. Si mostri che f è un omomorfismo.

Esercizio 19. Siano A e B due algebre di Boole, e sia $f:A\to B$ una funzione che preserva \vee e \neg . Si mostri che f è un omomorfismo.

Soluzione. Mostriamo che f preserva \wedge : $f(x \wedge y) = f(\neg(\neg x \vee \neg y)) = \neg(\neg f(x) \vee \neg f(y)) = f(x) \wedge f(y)$.

Esercizio 20. Sia $f: A \to B$ una funzione tra algebre di Boole che preserva \vee , \wedge , 0 e 1. Si mostri che f è un omomorfismo.

Soluzione. Dobbiamo mostrare che f preserva \neg . Si ricordi che $\neg x$ è l'unico elemento tale che $x \vee \neg x = 1$ e $x \wedge \neg x = 0$. Sia $x \in A$. Per mostrare che $f(\neg x) = \neg f(x)$ basta mostrare che $f(x) \vee f(\neg x) = 1$ e $f(x) \wedge f(\neg x) = 0$. Mostriamolo. Abbiamo $f(x) \lor f(\neg x) = f(x \lor \neg x) = f(1) = 1 \text{ e } f(x) \land f(\neg x) = f(x \land \neg x) = f(0) = 0.$

Esercizio 21. Dimostrare o confutare la seguente affermazione: Dati due omomorfismi $f, g: A \to B$ di algebre di Boole, la funzione

$$h: A \longrightarrow B$$

 $x \longmapsto f(x) \lor g(x)$

è un omomorfismo di algebre di Boole.

Soluzione. Falso. Si prendano sia ${\cal A}$ che ${\cal B}$ come la seguente algebra di Boole.

Si prenda f come l'identità e g come la mappa che manda \top in \top , a in b, b in a e

La funzione h non preserva \neg (e neanche \land). Un altro modo di vedere che h non è un omomorfismo è notare che la preimmagine di 0 e la preimmagine di 1 hanno cardinalità diverse.

Esercizio 22. Si mostri che composizione di omomorfismi è omomorfismo.

Esercizio 23. Mostrare che la funzione inversa di un isomorfismo di algebre di Boole è un isomorfismo di algebre di Boole.

Soluzione. Sia $f: A \to B$ un isomorfismo di algebre di Boole, e sia q la funzione inversa. q è biettiva, quindi basta mostrare che è un omomorfismo. Basta mostrare che q preserva \neg e \lor .

(a) Mostriamo che q preserva \neg . Sia $x \in B$. Poiché f è suriettiva, esiste $x' \in A$ tale che f(x') = x. Allora $g(\neg x) = g(\neg f(x')) = g(f(\neg x')) = \neg x'$. Inoltre $\neg g(x) = \neg g(f(x')) = \neg x'$. Perciò $g(\neg x) = \neg g(x)$.

Modo alternativo: Per mostrare che $g(\neg x) = \neg g(x)$ basta mostrare che $g(\neg x)$ e $\neg g(x)$ hanno la stessa immagine tramite f, poiché f è iniettiva. Mostriamolo. $f(g(\neg x)) = \neg x$, e $f(\neg g(x)) = \neg f(g(x)) = \neg x$.

(b) Mostriamo che g preserva \vee . Siano $x, y \in A$. Poiché f è suriettiva, esistono $x', y' \in A$ tali che f(x') = x e f(y') = y. Allora $g(x \lor y) = g(f(x') \lor f(y')) = y$ $g(f(x' \vee y')) = x' \vee y'$. Inoltre $g(x) \vee g(y) = g(f(x')) \vee g(f(y')) = x' \vee y'$.

Modo alternativo: Per mostrare che $g(x \lor y)$ e $g(x) \lor g(y)$ sono uguali basta mostrare che hanno la stessa immagine. Mostriamolo. $f(g(x \vee y)) = x \vee y$, $e f(g(x) \vee g(y)) = f(g(x)) \vee f(g(y)) = x \vee y.$

Esercizio 24. Si mostri che ogni filtro generato da un insieme finito è principale.

Esercizio 25. Si mostri che ogni filtro è l'intersezione dei filtri massimali che lo estendono.

Soluzione. Sia A un'algebra di Boole. Sia F un filtro di A. Sia Ult l'insieme dei filtri massimali (equivalentemente, gli ultrafiltri) di A. Mostriamo che $F = \bigcap_{U \in \text{Ult}} U$. L'inclusione $F \subseteq \bigcap_{U \in \text{Ult}} U$ è immediata. Mostriamo l'inclusione $\bigcap_{U \in \text{Ult}} U \subseteq F$. Dobbiamo mostrare che, per ogni $c \in A$, se $c \in \bigcap_{U \in \text{Ult}} U$ allora $c \in F$. Equivalentemente (prendendo la contronominale), dobbiamo mostrare che, per ogni $c \in A$, se $c \notin F$ allora $c \notin \bigcap_{U \in \text{Ult}} U$. Sia $c \in A$ con $c \notin F$. Allora, per il Corollario 3.84, esiste $U_0 \in \text{Ult}$ che estende F ma non contiene c. Allora $c \notin \bigcap_{U \in \text{Ult}} U$.

Esercizio 26. Siano $f: A \to B$ e $g: A \to C$ omomorfismi suriettivi (cioè epimorfismi) di algebre di Boole. Supponiamo $\ker f = \ker g$. Si mostri che esiste un isomorfismo $h: B \to C$ tale che $g = h \circ f$.

$$\begin{array}{c} A \xrightarrow{f} B \\ \downarrow \exists h \\ C \end{array}$$

Esercizio 27. Trovare un insieme di variabili P e un insieme di formule proposizionali le cui variabili appartengono a P tali che $|LT_{\Gamma}(P)| = 8$.

Esercizio 28. Sia X un insieme. Si mostri che

$$C := \{ Y \subseteq X \mid X \setminus Y \text{ è finito} \}$$

è un filtro di $\mathcal{P}(X)$. Sotto quali condizioni su X il filtro C è proprio?

Solutione...

Il filtro è proprio se e solo se X è infinito.

Esercizio 29. Per ogni $k \in \mathbb{N}$, si definisca

$$I_k := \{ n \in \mathbb{N} \mid n \ge k \}.$$

L'insieme

$$\mathcal{A} = \{ I_k \mid k \in \mathbb{N} \}$$

è un filtro di $\mathcal{P}(\mathbb{N})$?

Se sì, dimostrarlo, se no, descrivere il filtro generato.

Soluzione. No, perché non è chiuso verso l'alto. Per esempio, $I_3 \subseteq I_3 \cup \{1\}$, $I_3 \in \mathcal{A}$, $I_3 \cup \{1\} \notin \mathcal{A}$.

Il filtro generato è il filtro dei finiti e cofiniti. Usando Proposizione 3.69, otteniamo che il filtro generato da $\mathcal A$ è

$$\{X \in \mathcal{P}(\mathbb{N}) \mid \exists n \in \mathbb{N}, \exists Y_1, \dots, Y_n \in \mathcal{A} : X \supseteq Y_1 \cap \dots \cap Y_n\},\$$

il quale, poiché A è chiuso per intersezioni finite, è uguale a

$$\{X \in \mathcal{P}(\mathbb{N}) \mid \exists Y \in \mathcal{A} : X \supseteq Y\},\$$

il quale è l'insieme dei sottoinsiemi cofiniti di $\mathcal{P}(\mathbb{N})$.

Esercizio 30. Sia X un insieme finito. Si mostri che ogni filtro di $\mathcal{P}(X)$ è principale.

Esercizio 31. Sia X un insieme infinito. Si mostri che esiste un filtro di $\mathcal{P}(X)$ non principale.

Esercizio 32. Sia $n \in \mathbb{N}$, e sia B un'algebra di Boole di n elementi. Quanti filtri ha B? Quante congruenze?

Soluzione. La soluzione è n ad entrambe le domande. Dimostriamolo.

Dimostriamo anzitutto la seguente cosa:

Lemma 33. Oqni filtro F in un algebra di Boole B finita è principale, cioè esiste un elemento x tale che $F = \uparrow x$ (dove $\uparrow x$ denota l'insieme $\{y \in B \mid x \leq y\}$).

Dimostrazione del lemma. Sia F un filtro dell'algebra di Boole finita B. Allora Fè finito. Poiché i filtri sono chiusi per inf finiti, anche inf F appartiene a F, cioè inf F è il minimo di F. Quindi, $F \subseteq \uparrow$ (inf F). Poiché i filtri sono chiusi verso l'alto e inf $F \in F$, abbiamo \uparrow (inf F) $\subseteq F$. Perciò $F = \uparrow$ (inf F).

Concludiamo ora la soluzione dell'esercizio. Sia Filt(B) l'insieme dei filtri di B. La mappa

$$B \longrightarrow \operatorname{Filt}(B)$$
$$b \longmapsto \uparrow b$$

è ben definita (cioè $\uparrow b$ è un filtro per ogni b), iniettiva (perché l'ordine parziale \leq su B è, per definizione di ordine parziale, antisimmetrico) e suriettiva per il lemma sopra. Perciò Filt(B) ha la stessa cardinalità di B, cioè n.

Le congruenze sono in biezione con i filtri, perciò sono n anch'esse.

Esercizio 34. Dimostra o confuta la seguente affermazione.

Per ogni algebra di Boole B, ogni filtro di B è principale.

Soluzione. Falso. Si prenda un insieme X infinito e si consideri l'algebra di Boole $\mathcal{P}(X)$. L'insieme dei sottoinsiemi cofiniti di X è un filtro. Inoltre, non è principale perché non ha minimo: per ogni insieme cofinito A ne esiste uno più piccolo (basta togliere un elemento ad A).

Esercizio 35. Sia A un'algebra di Boole finita. Si mostri che gli ultrafiltri sono esattamente i filtri principali \mathcal{F}_a generati da un elemento $a \in A$ che è minimale tra gli elementi non nulli di A.

Soluzione. Poiché A è finita, ogni filtro di A è principale. Per $a,b\in A$ abbiamo $\mathcal{F}_a \subseteq \mathcal{F}_b$ se e solo se $a \leq b$. Inoltre, \mathcal{F}_a è proprio se e solo se a = 0. Perciò, \mathcal{F}_a è massimale tra i filtri propri se e solo se a è minimale tra gli elementi non nulli.

Esercizio 36. Sia X un insieme finito, con n elementi. Quanti filtri ammette $\mathcal{P}(X)$? Quante congruenze? Quanti ultrafiltri?

Esercizio 37. Sia X un insieme finito, e sia n la cardinalità di X. Quanti sono gli ultrafiltri di $\mathcal{P}(X)$?

Soluzione. Sono n. Dimostriamolo. Poiché $\mathcal{P}(X)$ è finita, gli ultrafiltri di $\mathcal{P}(X)$ sono esattamente i filtri principali generati da un elemento $A \in \mathcal{P}(X)$ che è minimale tra gli elementi di $\mathcal{P}(X)$ non nulli, cioè i singoletti.

Esercizio 38. Sia X un insieme e U un ultrafiltro dell'algebra di Boole $\mathcal{P}(X)$. Mostrare che le seguenti condizioni sono equivalenti.

- (a) U è principale, cioè esiste $Y \in \mathcal{P}(X)$ tale che U è il filtro generato da Y (cioè $U = \{Z \subseteq X \mid Y \subseteq Z\}$).
- (b) Esiste un elemento $x \in X$ tale che $U = \{Y \subseteq X \mid x \in Y\}.$

³Un elemento minimale tra gli elementi non nulli è detto atomo.

Soluzione. (b) \Rightarrow (a). U è il filtro generato da $\{x\}$.

(a) \Rightarrow (b). Supponiamo (a). Allora esiste $Y \in \mathcal{P}(X)$ tale che Y è minimo di U. $Y \neq \emptyset$ perché U è proprio. Esiste $x \in Y$. $\uparrow \{x\}$ è filtro proprio. $U = \uparrow Y \subseteq \uparrow \{x\}$. Dato che U è massimale tra i filtri propri rispetto all'inclusione, $Y = \uparrow \{x\}$.

Esercizio 39. Sia X un insieme e U un ultrafiltro dell'algebra di Boole $\mathcal{P}(X)$. Si mostri che le seguenti condizioni sono equivalenti.

- (a) U è principale.
- (b) Esiste un sottoinsieme $Y \subseteq X$ finito che appartiene a U.

Soluzione. (a) \Rightarrow (b). Se U è principale, esiste $x \in X$ tale che $U = \{Y \in \mathcal{P}(X) \mid x \in Y\}$. Si prenda $Y = \{x\}$.

(b) \Rightarrow (a). Sia $Y = \{y_1, \dots, y_n\} \in U$. Facciamo per semplicità il caso n = 2 (il caso n generale si mostra per induzione); quindi $Y = \{y_1, y_2\}$. Abbiamo $\{y_1\} \cup \{y_2\} = \{y_1, y_2\} \in U$; per primalità di U, $y_1 \in U$ oppure $y_2 \in U$. Senza perdità di generalità, assumiamo $y_1 \in U$. Allora il filtro \mathcal{F}_{y_1} generato da y_1 è contenuto in U. Poichè \mathcal{F}_{y_1} e U sono entrambi ultrafiltri, dal fatto che uno è incluso nell'altro deduciamo che sono uguali. Perciò U è principale.

Esercizio 40. Sia X un insieme e U un ultrafiltro dell'algebra di Boole $\mathcal{P}(X)$. Si mostri che le seguenti condizioni sono equivalenti.

- (a) U non è principale.
- (b) Ogni sottoinsieme $Y \subseteq X$ cofinito (cioè tale che $X \setminus Y$ è finito) appartiene a U.

Soluzione. In virtù di Esercizio 39, è abbastanza mostrare che (b) è equivalente a

(b) Ogni sottoinsieme Y di X finito non appartiene a U.

L'equivalenza tra queste condizioni segue abbastanza immediatamente dal fatto che, poiché U è un ultrafiltro, per ogni sottoinsieme Y di X abbiamo $Y \in U$ oppure $X \setminus Y \in U$, e non possono accadere entrambe le condizioni.

Esercizio 41. Sia X un insieme infinito. Sia \mathcal{B} l'insieme dei sottoinsiemi A di $X \cup \{\infty\}$ tali che $(A \text{ è finito e non contiene } \infty)$ oppure $(A \text{ è cofinito e contiene } \infty)$. Mostrare che \mathcal{B} è un'algebra di Boole isomorfa all'algebra dei finiti e cofiniti di X.

Soluzione. È un'algebra di Boole perché è una sottalgebra di $\mathcal{P}(X \cup \infty)$, che è un'algebra di Boole. Definiamo un isomorfismo da $\mathcal{P}(X \cup \infty)$ a $\mathcal{P}(X)$: $A \mapsto A \setminus \{\infty\}$.

Esercizio 42. Sia X un insieme infinito. Si consideri la sottalgebra di $\mathcal{P}(X)$

$$A := \{Y \subseteq X \mid Y \text{ è finito o cofinito}\}.$$

Si caratterizzino tutti gli ultrafiltri di A. Come si deduce dalla dimostrazione del Teorema 3.86 delle dispense (Rappresentazione di Stone), denotando con $\mathcal{U}(A)$ l'algebra delle parti dell'insieme degli ultrafiltri di A, l'algebra A è isomorfa a una sottalgebra A' di $\mathcal{P}(\mathcal{U}(A))$. Quali sono gli elementi di tale sottalgebra? (Si dia una descrizione più esplicita possibile.)

Esercizio 43. Sia X un insieme infinito. Si mostri che esiste un ultrafiltro di $\mathcal{P}(X)$ non principale.

Soluzione. Sia F il filtro dei cofiniti. Poiché X è infinito, F è proprio. Per il teorema dell'ultrafiltro (Teorema 3.82), F si estende a un ultrafiltro U. U non è principale perché contiene tutti i cofiniti.

Esercizio 44. Sia X un insieme, sia \mathcal{A} una sottalgebra di Boole di $\mathcal{P}(X)$ e sia $x \in X$. Mostrare che $F := \{Y \in \mathcal{A} \mid x \in Y\}$ è un ultrafiltro di \mathcal{A} . È corretto asserire che è principale?

Soluzione. È chiaramente un filtro, ed è proprio perché $\varnothing \notin F$. Per ogni $Y \in \mathcal{A}$ abbiamo $A \in F$ (cioè $x \in A$) oppure $\neg A \in F$ (cioè $x \in X \setminus A$). Perciò, per il Lemma 3.79, è un ultrafiltro.

Non è corretto asserire che è principale. Infatti, si consideri il seguente controesempio. Sia X un insieme infinito, e sia \mathcal{A} l'insieme dei sottoinsiemi A di $X \cup \{\infty\}$ tali che $(A \text{ è finito e non contiene } \infty)$ oppure $(A \text{ è cofinito e contiene } \infty)$. Si prenda $x = \infty$.

Esercizio 45. Sia X un insieme infinito. Quali sottoinsiemi di X appartengono ad ogni ultrafiltro non principale di $\mathcal{P}(X)$?

Soluzione. I cofiniti. Infatti:

- (a) Ogni sottoinsieme cofinito appartiene a ogni ultrafiltro non principale di $\mathcal{P}(X)$. Sia Y un sottoinsieme non cofinito.
- (b) Poichè il filtro dei cofiniti è l'intersezione degli ultrafiltri che lo estendono, esiste un ultrafiltro U che estende il filtro dei cofiniti ed è tale che $Y \notin U$. Poiché U contiene il filtro dei cofiniti, è non principale. Perciò non è vero che Y appartiene ad ogni ultrafiltro non principale di $\mathcal{P}(X)$.

Esercizio 46. Si mostri che, se F è un filtro proprio che non è un ultrafiltro, allora F è contenuto in almeno due ultrafiltri diversi.

Soluzione. Sia A un'algebra di Boole e F un filtro proprio che non è un ultrafiltro. Allora esiste un elemento $x \in F$ tale che $x \notin F$ e $\neg x \notin F$.

Mostriamo che il filtro generato da $F \cup \{x\}$ è proprio mostrando che ha la FIP (Finite Intersection Property). Per mostrare che $F \cup \{x\}$ ha la FIP basta mostrare che per ogni $y \in F$ si ha $x \land y \neq 0$; questo è vero perché, se assumessimo il contrario, cioè $x \wedge y = 0$, avremmo (per il Lemma 3.34) $y \leq \neg x$, e ciò implicherebbe $\neg x \in F$ perché F è chiuso verso l'alto, e questo darebbe un assurdo. Perciò, $F \cup \{x\}$ ha la FIP. Perciò, il filtro generato da $F \cup \{x\}$ è proprio. Perciò, $F \cup \{x\}$ si estende a un ultrafiltro U_1 .

Mostriamo che il filtro generato da $F \cup \{\neg x\}$ è proprio mostrando che ha la FIP (Finite Intersection Property). Per mostrare che $F \cup \{\neg x\}$ ha la FIP basta mostrare che per ogni $y \in F$ si ha $\neg x \land y \neq 0$; questo è vero perché, se assumessimo il contrario, cioè $\neg x \land y = 0$, avremmo (per il Lemma 3.34) y < x, e ciò implicherebbe $x \in F$ perché F è chiuso verso l'alto, e questo darebbe un assurdo. Perciò, $F \cup \{\neg x\}$ ha la FIP. Perciò, il filtro generato da $F \cup \{\neg x\}$ è proprio. Perciò, $F \cup \{\neg x\}$ si estende a un ultrafiltro U_2 .

Gli ultrafiltri U_1 e U_2 estendono F e sono diversi, perché se per assurdo fossero lo stesso ultrafilto, x e $\neg x$ apparterrebbero a tale ultrafiltro, e perciò ci apparterrebbe anche il loro meet 0: assurdo.

Esercizio 47. Sia \mathcal{F} un filtro proprio su A e sia B un sottoinsieme di A tale che $A \setminus B \notin \mathcal{F}$. Si mostri che esiste un filtro proprio \mathcal{F}' tale che $\mathcal{F} \subseteq \mathcal{F}'$ e $B \in \mathcal{F}$.

Esercizio 48. Sia S un sottoinsieme di un'algebra di Boole A, e sia $x \in A$. Si supponga che S abbia la finite intersection property. Si mostri che $A \cup \{x\}$ ha la finite intersection property oppure $A \cup \{\neg x\}$ ha la finite intersection property.

Esercizio 49. Sia $\{A_i \mid i \in I\}$ (con $I \neq \emptyset$) una catena di sottoinsiemi di un'algebra di Boole (cioè una collezione di sottoinsiemi totalmente ordinati per inclusione insiemistica). Si mostri che se per ogni $i \in I$ l'insieme A_i ha la finite intersection property allora anche l'unione $\bigcup_{i \in I} A_i$ ha la finite intersection property.

Esercizio 50. Si esibiscano un'algebra di Boole A e un sottoinsieme S con le seguenti proprietà: $0 \notin S$, per ogni $x, y \in S$ si ha $x \wedge y \neq 0$, ma S non ha la finite intersection property.

Esercizio 51. Quali sono gli ultrafiltri dell'algebra di Boole dei finiti-cofiniti di un insieme infinito X?

Soluzione. Sono i filtri principali ($\uparrow \{x\}, x \in X$) e il filtro dei cofiniti.

Esercizio 52. Sia \mathcal{B} l'insieme dei sottoinsiemi A di $X \cup \{\infty\}$ tali che $(A \in A)$ finito e non contiene ∞) oppure (A è cofinito e contiene ∞). Sia Ult l'insieme di ultrafiltri di \mathcal{B} . Mostrare che la mappa

$$U : X \cup \{\infty\} \longrightarrow \text{Ult}$$

 $x \longmapsto \{A \in \mathcal{B} \mid x \in A\}$

è biunivoca.

Esercizio 53. (a) Si mostrino un insieme X e una sottalgebra \mathcal{A} di Boole di $\mathcal{P}(X)$ tale che, per ogni $x \in X$, $\{x\} \notin \mathcal{A}$.

- (b) Si mostrino un insieme non vuoto X e una sottalgebra \mathcal{A} di Boole di $\mathcal{P}(X)$ tale che, per ogni $x \in X$, l'ultrafiltro $\{Y \in \mathcal{A} \mid x \in Y\}$ di \mathcal{A} non è principale.
- (a) Prima soluzione: $X = \emptyset$, $A = \mathcal{P}(\emptyset)$. Soluzione.

Seconda soluzione: $X = \{a, b\}, A = \{\emptyset, \{a, b\}\}.$

Terza soluzione: Sia $X=\mathbb{Q}$, e \mathcal{A} l'insieme dei sottoinsiemi di \mathbb{Q} che sono sia chiusi che aperti nella topologia indotta dalla topologia euclidea.

(b) Sia $X = \mathbb{Q}$, e \mathcal{A} l'insieme dei sottoinsiemi di \mathbb{Q} che sono sia chiusi che aperti nella topologia indotta dalla topologia euclidea.

Esercizio 54. Si esibisca un'algebra di Boole con almeno due elementi che non abbia atomi. (Atomo = elemento minimale tra gli elementi non nulli.)

Soluzione. Prima possibilità: l'algebra libera su un insieme infinito.

Soluzione alternativa: l'algebra dei sottoinsiemi aperti e chiusi di Q con la topologia indotta dalla topologia euclidea.

2. Algebre di Lindenbaum

Esercizio 55. Siano $x \in y$ variabili distinte.

- (a) [x] = [y] in $LT_{\emptyset}(\{x, y\})$?
- (b) $\neg([x] \land [y]) = \neg[x] \lor \neg[y]$ in $LT_{\emptyset}(\{x,y\})$?
- (c) $[x] \wedge [y] = [x]$ in $LT_{\emptyset}(\{x, y\})$?
- (d) $[x] \wedge [y] = [x]$ in $LT_{\{x \to y\}}(\{x, y\})$? (e) $[x] \to [y] = [y] \to [x]$ in $LT_{\{x \lor y\}}(\{x, y\})$? (f) $[x] \vee [y] = [x] \wedge [y]$ in $LT_{\emptyset}(\{x, y\})$?

Esercizio 56. Sia P un insieme finito. Si stabilisca il numero di elementi dell'algebra di Lindenbaum-Tarski $\mathrm{LT}_\emptyset(P)$ in funzione del numero di elementi di P.

Esercizio 57. Si stabilisca il numero di elementi di un insieme X tale che $|\mathcal{P}(X)| = 4$. Si stabilisca il numero di elementi di un insieme P tale che $|\mathrm{LT}_{\emptyset}(P)| = 4$.

Esercizio 58. È vero che, per ogni algebra di Boole A finita, esiste un insieme P tale che $A \cong LT_{\emptyset}(P)$?

Esercizio 59. È vero che, per ogni algebra di Boole A, esistono un insieme P e un insieme Γ di formule proposizionali con variabili appartenenti a P tale che $A \cong LT_{\Gamma}(P)$?

Esercizio 60. Sia \mathcal{U} un ultrafiltro di un'algebra di Lindenbaum $LT_{\emptyset}(P)$. Si mostri che, per tutte le formule φ, ψ nelle variabili proposizionali in P,

- (a) $[\neg \varphi] \in \mathcal{U}$ se e solo se $[\varphi] \notin \mathcal{U}$.
- (b) $[\varphi \wedge \psi] \in \mathcal{U}$ se e solo se $[\varphi] \in \mathcal{U}$ e $[\psi] \in \mathcal{U}$.
- (c) Se $[\varphi], [\varphi \to \psi] \in \mathcal{U}$ allora $[\psi] \in \mathcal{U}$.

Esercizio 61. Qual è l'algebra libera generata dall'insieme vuoto?

Esercizio 62. Sia A l'algebra di Boole degenere (cioè A è un singoletto). Mostrare che non esiste alcun sottoinsieme X di A tale che A è liberamente generata da X.

Esercizio 63. Si mostri che, per ogni algebra di Boole B, esistono un'algebra libera A e un omomorfismo suriettivo $f: A \to B$.

Esercizio 64. Sia A un algebra di Boole. Si mostri che esiste un insieme P e un insieme Γ di formule proposizionali tali che A è isomorfo a $LT_{\Gamma}(P)$.

Esercizio 65. Trovare un insieme di variabili P e un insieme di formule proposizionali Γ con variabili in P tale che $|\mathrm{LT}_{\Gamma}(P)| = 8$.

Esercizio 66. Mostrare che ogni algebra di Boole è isomorfa a $LT_{\Gamma}(P)$ per qualche $P \in \Gamma$. (Qui è ammesso prendere Γ incoerente per ottenere l'algebra di Boole di un solo elemento.)

Esercizio 67. Sia X un insieme (di variabili proposizionali). Mostrare che i seguenti insiemi sono in biezione.

- (a) $\{Y \mid Y \subseteq X\}.$
- (b) $\{\Sigma \mid \Sigma \text{ insieme massimalmente coerente di formule proposizionali con variabili in } X\}$.
- (c) $\{\mathcal{U} \mid \mathcal{U} \text{ ultrafiltro di } \mathrm{LT}_{\varnothing}(X)\}.$

3. Algebre atomiche

Esercizio 68. Sia B algebra di Boole finita, di cardinalità 2^n , dove n è il numero di atomi. Dimostra che qualunque insieme di n-1 atomi di B genera B.

Esercizio 69. Siano A un algebra di Boole, e sia B una sua sottalgebra (cioè $B \subseteq A$, e B è chiuso per le operazioni booleane). È vero che ogni atomo dell'algebra di Boole B è atomo dell'algebra di Boole A?

Esercizio 70. Siano B_1 e B_2 algebre di Boole finite, con $|B_1| = |B_2| = 2^n$. Quanti isomorfismi ci sono da B_1 a B_2 ?

Esercizio 71. Un insieme parzialmente ordinato è detto *completo* se ogni suo sottoinsieme ammette sup (equivalentemente, se ogni suo sottoinsieme ammette inf). Si mostri che esistono algebre di Boole che non sono complete.

Soluzione. Sia B l'algebra di Boole dei finiti-cofiniti di \mathbb{N} . B non è completa. Infatti, sia P il sottoinsieme di \mathbb{N} costituito da tutti i numeri pari. Sia S l'insieme dei sottoinsiemi finiti di P. S è un sottoinsieme di B che non ammette sup.

Esercizio 72. Esibire un'algebra atomica che non sia completa (cioè che non ammette sup e inf arbitrari). (Tale algebra non può essere isomorfa a un'algebra delle parti, in quanto queste sono sempre complete.)

Esercizio 73. Sia $U := \{a, b, c\}$. Determinare il numero di sottalgebre di $\mathcal{P}(U)$.

Esercizio 74. Diciamo che un'algebra di Boole A è densa se per ogni $x, y \in A$ tali che x < y esiste $z \in A$ tale che x < z < y. Si mostri che un'algebra di Boole è densa se e solo se non ha atomi.

4. Curiosità

Gli ultrafiltri possono essere usati per rispondere (negativamente) alla seguente domanda:

È vero che, per ogni gioco a turni (potenzialemente infiniti) tra due giocatori che preveda in ogni caso un vincitore e uno sconfitto (quindi senza possibilità di pareggiare) e che sia deterministico (cioè non c'è una componente randomica), esiste una strategia vincente per almeno uno dei due giocatori?

La risposta (abbastanza sorprendentemente) è no. Un gioco senza strategie vincenti è il seguente.

Si fissi un ultrafiltro non-principale U di $\mathcal{P}(\mathbb{N})$. A turno, il giocatore A e il giocatore B scelgono un numero naturale, con la condizione che esso sia strettamente maggiore di quelli scelti precedentemente. Indicando con a_i l'i-esimo numero scelto da A e con b_i l'i-esimo numero scelto da B, avremo una successione

$$a_1 < b_1 < a_2 < b_2 < a_3 < b_3 < \dots$$

B vince se $\bigcup_{i\in\mathbb{N}}([a_i+1,b_i]\cap\mathbb{N})\in U$, altrimenti vince A.

La dimostrazione del fatto che né A né B ha una strategia vincente si basa su un argomento di "rubare la strategia": se A avesse una strategia vincente, allora B potrebbe copiarla per ottenere una strategia vincente per sé (il che è assurdo perchè non possono avere entrambi strategie vincenti), e viceversa. Per maggiori dettagli, si veda il libro [Logic in games. Johan Van Benthem. 2014. M.I.T. Press., Example 5.1, p. 105].