

CATEGORICAL DUALITIES IN LOGIC

Marco Abbadini

Every Wed, in this room, until 8 April

Exam: 19 June (Oral)

<https://marcoabbadini-uni.github.com> → Teaching → Categorical Dualities in Log. :

$$2 = 2$$

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

CLASSICAL PROP. LOGIC

algebras of
formulas

Boolean algebras

Syntax

\cong^{op}

Categorical duality

Stone Spaces

EASIER

spaces of models

semantics

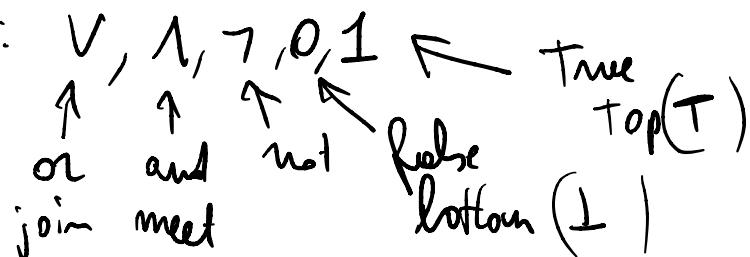
→ INTUITIONISTIC

→ FIRST-ORDER

CLASSICAL PROPOSITIONAL LOGIC

- propositional language L , i.e. a set (of propositional symbols/variables): p, q, r

- connectives:



$$x \rightarrow y := \neg x \vee y$$

$$x \leftrightarrow y := (x \rightarrow y) \wedge (y \rightarrow x)$$

- The set of formulas $\text{Form}(L)$ in the language L is defined by induction

- all prop. symbols (i.e., elements of L) are formulas E.g: p, q, r
- if $\varphi, \psi \in \text{Form}(L)$ Then $(\varphi \vee \psi) \in \text{Form}(L)$ $p \vee q$
and $(\varphi \wedge \psi) \in \text{Form}(L)$ $(p \vee q) \wedge r$
- if $\varphi \in \text{Form}(L)$, then $\neg \varphi \in \text{Form}(L)$:
- $0, 1 \in \text{Form}(L)$

Ex: Consider the language $\mathcal{L} = \{p, q\}$.
 The formulas $p \vee q$, $q \vee p$ are equivalent, because they have the same Truth Tables.

p	0	1	p	1
q	0	0	1	0
$p \vee q$	0	1	1	1
$q \vee p$	0	1	1	1

Def (Semantic equivalence)

Given a propositional language \mathcal{L} , $\varphi, \psi \in \text{Form}(\mathcal{L})$

$$\varphi \equiv \psi \Leftrightarrow \forall v: \mathcal{L} \rightarrow \{0,1\} \quad \bar{v}(\varphi) = \bar{v}(\psi)$$

semantically equivalent

see def. below

Given $v: \mathcal{L} \rightarrow \{0,1\}$, we define
 $\bar{v}: \text{Form}(\mathcal{L}) \rightarrow \{0,1\}$ by induction
 on the complexity of formulas

$$\mathcal{L} \ni p \mapsto p$$

$$\neg \varphi \mapsto \neg \bar{v}(\varphi) \in \{0,1\}$$

$$\varphi \vee \psi \mapsto \bar{v}(\varphi) \vee \bar{v}(\psi) \in \{0,1\}$$

$$0 \mapsto 0$$

$$1 \mapsto 1$$

$$q \mapsto \bar{v}(q)$$

In $\mathcal{L} = \{0,1\}$, by convention,

$0 \wedge 0 = 0$	$0 \vee 0 = 0$	$\neg 0 = 1$
$0 \wedge 1 = 0$	$0 \vee 1 = 1$	$\neg 1 = 0$
$1 \wedge 0 = 0$	$1 \vee 0 = 1$	$\neg 1 = 1$
$1 \wedge 1 = 1$	$1 \vee 1 = 1$	

For example,
 given $v: \mathcal{L} \rightarrow \{0,1\}$
 $p \mapsto 0$, $q \mapsto 0$, we have

$$\bar{v}(p \vee q) = \bar{v}(p) \vee \bar{v}(q) = v(p) \vee v(q) = 0 \vee 0 = 0$$

For example, if $L = \{p, q\}$, then one can show that $|Form(L)| = 2^{2^2} = 16$

(Def) A (propositional) Theory T in a (propositional) language \mathcal{L} is a subset of $\text{Form}(\mathcal{L})$.

$$\text{E.g.: } \mathcal{L} = \{p, q\} \quad \mathcal{T} = \{p \vee q\}$$

Then, new formulas become equivalent " $p \vee q \equiv_T 1$ " " $p \vee \neg q \equiv_T p$ "

Def A model of a prop. theory T in a lang. \mathcal{L} is a function

Def (Semantic equiv. modulo a theory)

Given a theory T in a lang. \mathcal{L} , $\varphi, \psi \in \text{Form}(\mathcal{L})$

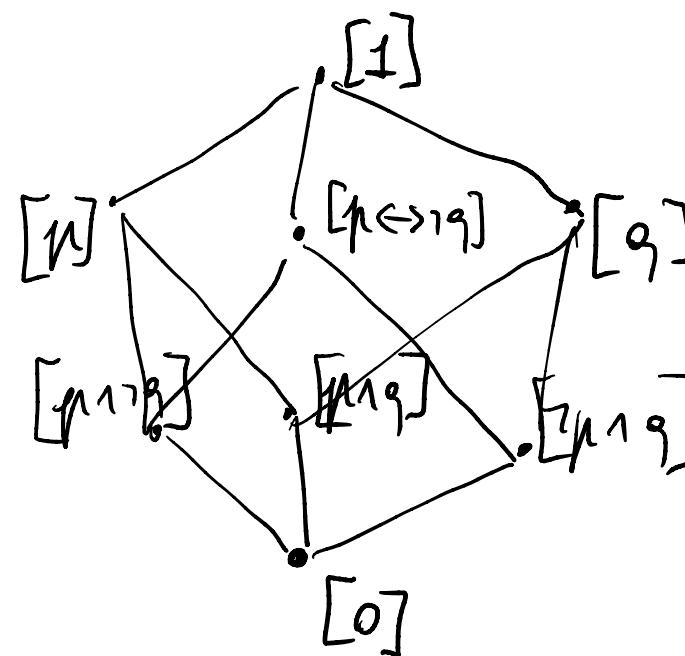
We write

$\varphi \equiv_T \psi$ (semantic equiv. modulo T)

if for every model $v: \mathcal{L} \rightarrow \{0,1\}$ of T , $\bar{v}(\varphi) = \bar{v}(\psi)$.

Example: $\mathcal{L} = \{p, q\}$ $T = \{p \vee q\}$

$\text{Form}(\mathcal{L}) \equiv_T$



$\varphi \leq \psi$ means
 φ implies ψ

Boolean algebras $\rightarrow (B; \vee, \wedge, \neg, 0, 1)$ satif. certain axioms: $a \wedge a = a$
 $a \vee \neg a = 1$

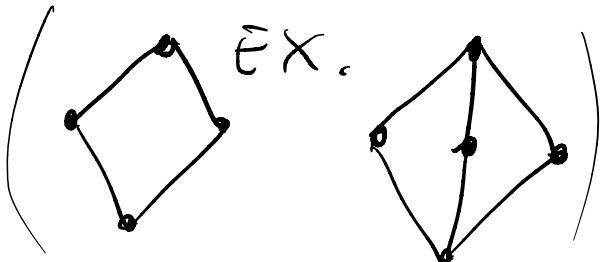
\rightarrow can be seen as certain posets (partially ordered sets)

$$\begin{matrix} p \wedge q \leq p \\ \leq q \end{matrix}$$

" \wedge " can be interpreted as an infimum

$$\begin{matrix} a \leq p \\ \leq q \end{matrix} \Rightarrow a \leq p \wedge q$$

Def A **lattice** (Fr: Treillis) is a poset in which any two elements have a sup and an inf



Ex: $(P(X), \subseteq)$ is a lattice

infimum $A \wedge B := A \cap B$

supremum $A \vee B := A \cup B$

Equiv. def

A lattice is a set L with two binary operations \vee, \wedge satisfying

• \vee and \wedge are comm. and associating

• $\forall a, b \quad a \vee (a \wedge b) = a$

$\forall x_1 \dots x_m \quad t_1(\dots) = t_2(\dots)$

• $\forall a, b \quad a \wedge (a \vee b) = a$

$a \leq b \Leftrightarrow a \wedge b = a \quad (\text{equiv. } a \vee b = b)$

Def A bounded lattice ($\text{Fr. Treillis borné}$) is a lattice with a

smallest elem. and a greatest elem.

(0, or \perp)

(1, or \top)

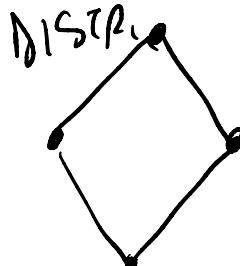
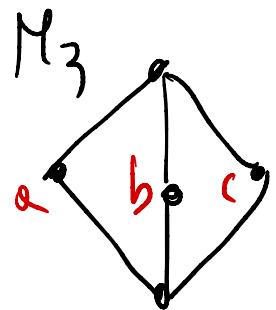
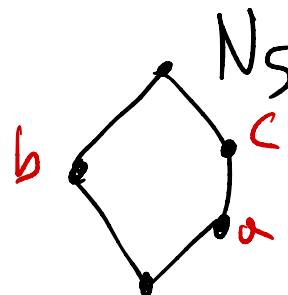
i.e.

$$\begin{cases}
 \forall a \quad \alpha \perp \perp = 0 & (0 \leq \alpha) \\
 \forall a \quad \alpha \vee \perp = 1 & (\alpha \leq 1)
 \end{cases}$$

(Def) A lattice is distributive if any of the following equiv. cond. hold:

- $\forall a, b, c \quad \alpha \vee (b \wedge c) = (\alpha \vee b) \wedge (\alpha \vee c)$
- $\forall a, b, c \quad \alpha \wedge (b \vee c) = (\alpha \wedge b) \vee (\alpha \wedge c)$

Ex: $\mathcal{P}(X)$.



$$\underbrace{\alpha \vee (b \wedge c)}_{\perp} \neq \underbrace{(\alpha \vee b) \wedge (\alpha \vee c)}_{\top}$$

Then A lattice is dist. iff it does not have M_3 or N_5 as a sublattice

$M_3 \not\hookrightarrow L$ $N_5 \not\hookrightarrow L$ i.e. There is no injective function from M_3 or N_5 that preserves \vee, \wedge

Def A Bool. alg. is an alg. structure $\langle B; \vee, \wedge, \top, 0, 1 \rangle$ s.t.

\uparrow \uparrow \uparrow \uparrow \uparrow
 set lin. op. neg. elements of B

- $\langle B; \vee, \wedge, 0, 1 \rangle$ is a bounded dist. lattice
- $\forall a \ \exists \neg a = 0$ } " $\neg a$ is a complement of a "
- $\forall a \ \exists a \vee \neg a = 1$ }

they are all
equational axioms

" $\forall x_1, \dots, x_n$

One can show that, for any Theory T in a propositional language \mathcal{L}

$\left(\text{Form}(\mathcal{L}) \xrightarrow{\equiv_T} ; \vee, \wedge, \top, 0, 1 \right)$ is a Bool. alg.

\uparrow
 semantic equiv. mod T

These are defined by
(they are well-defined)

$$\begin{cases}
 [\varphi] \vee [\psi] = [\varphi \vee \psi] \\
 [\varphi] \wedge [\psi] = [\varphi \wedge \psi] \\
 \neg [\varphi] = [\neg \varphi] \\
 1 = [1] \\
 0 = [0]
 \end{cases}$$

E.g.: $[\varphi] \wedge [\varphi] \stackrel{?}{=} [0]$ $\varphi \in \text{Form}(\mathcal{L})$

||

$$[\varphi \wedge \varphi] \stackrel{?}{=} [0]$$

For every model $v: \mathcal{L} \rightarrow \{0,1\}$ of \mathcal{T}

$$\bar{v}([\varphi \wedge \varphi]) \stackrel{?}{=} \bar{v}(0)$$

||

$$\bar{v}([\varphi]) \wedge \bar{v}([\varphi])$$

$\in \{0,1\}$

in $\{0,1\}$ for any $a \in \{0,1\}$
 $a \wedge a = 0$

in $\{0,1\}$ because $a \wedge a = 0$ holds in $\{0,1\}$.

All axioms of Bool. alg. hold in $\text{Form}(\mathcal{L}) \stackrel{?}{=} \wedge$ because they are equations holding in $\{0,1\}$

Every equat. that holds in $\{0,1\}$ holds in $\text{Form}(L) / \equiv_T$
(Equation: $\forall x_1, \dots, x_n \ t_1(\dots) = t_2(\dots)$)

- Do Bool. algs really axiomatize the algebraic structures of the form

$\text{Form}(L) / \equiv_T$?

(Or are we missing some axioms?)

In every Bool. alg. isomorphic to $\text{Form}(L) / \equiv_T$ for some T and L ?

- Does a Bool. alg. satisfy all equations satisfied by $\{0,1\}$?

YES, (These are consequences of
Stone's Repn. Theorem).

Given a set X , the power set $\langle P(X), \cup, \cap, \setminus, \emptyset, X \rangle$ is a Bool. alg.

\subseteq

Let's verify that some axioms hold:

$$A \cap A^c = \emptyset$$

$$A \cup A^c = X$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

\supseteq easy (it holds in any lattice)

\subseteq let $x \in A \cap (B \cup C)$

$$\rightsquigarrow x \in A$$

$$\rightsquigarrow (x \in B) \text{ or } (x \in C)$$

$$\rightsquigarrow (x \in A \cap B) \text{ or } (x \in A \cap C)$$

$$\rightarrow x \in (A \cap B) \cup (A \cap C)$$

Also any subset of $P(X)$ that is closed under $\cup, \cap, \setminus, \emptyset, X$ is a Bool. alg.

"(Boolean) subalgebra of $P(X)$ "

Stone's Repn. Theorem for Bool. algebras (1936)

Any Boolean algebra is isomorphic to a subalgebra of the power set of some set X .

$$1 = \cap$$

$$V = \cup$$

$$\top = \complement$$

$$0 = \emptyset$$

$$1 = X$$

i.e., there is a set X and

$$B \hookrightarrow P(X)$$

inj. map

preserves $\vee, \wedge, \top, 0, 1$

CONSEQ. It gives a repn. of Bool. alg.: intuition

$$B \hookrightarrow P(X) = 2 \times 2 \times 2 \times \dots = 2^X = \prod_{x \in X} 2$$

$|X|$ Times

Equations are

preserved

by mod. and

$$\{ \text{Boolean algebras} \} = \text{ISP}(2) = \text{HSP}(2)$$

all equations holding in 2 hold

subalg.

We give a proof of Stone repn. Theorem.

Stone's Repn. Theorem for Bool. algebras (1936)

Any Boolean algebra is isomorphic to a subalgebra of the power set of some set X .

~~Idea~~

$$B \simeq \text{Form}(\mathbb{L}) / \equiv_T$$

$$b \rightarrow [\varphi]$$

$$B \xrightarrow{?} \mathcal{P}(X)$$

$$b \mapsto Y \subseteq X$$

"
Models of T

we identify a formula with the set of models in which it holds

A model of a prop. theory T in a lang. \mathbb{L} is

a valuation $v: \text{Form}(\mathbb{L}) \rightarrow \{0,1\}$ s.t. for all $\sigma \in T$ $\bar{v}(\sigma) = 1$

$$\begin{array}{c} \uparrow \\ \text{Form}(\mathbb{L}) \end{array} \xrightarrow{\bar{v}}$$

$$\bar{v}(\varphi \wedge \psi) = \bar{v}(\varphi) \wedge \bar{v}(\psi)$$

this corresponds to Bool. hom. $B \rightarrow 2^{\{0,1\}}$
Idea for Stone's repn. Theorem.:

$X = \text{hom}(B, 2)$ set of hom. from $B \rightarrow 2^{\{0,1\}}$

Def A **Bool. hom.** $f: A \rightarrow B$ between Bool. alg. is a function s.t.

$$f(1) = 1$$

$$f(a \wedge b) = f(a) \wedge f(b)$$

$$f(\neg a) = \neg f(a)$$

$$\left(\text{as a conseq. } f(0) = 0; f(a \vee b) = f(a) \vee f(b) \right)$$

A homomorph. from B to 2 consists of assigning to each element of B a truth value (0 or 1) in a consistent way, i.e., for example

if $f \mapsto 0$
then $\neg f \mapsto 1$

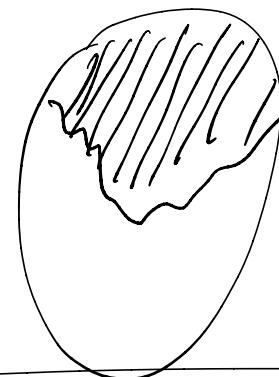
We can identify a Bool. hom. $f: B \rightarrow \{0,1\}$ with $f^{-1}[\{1\}]$

The subsets of B of the form $f^{-1}[\{1\}]$ for some hom. $f: B \rightarrow 2$ are the "ultrafilters".

Def A **filter** of a Bool. alg. B is a subset $F \subseteq B$ s.t.

- F is upwards closed ($x \in F \Rightarrow y \in F$)
- $1 \in F$
- $x, y \in F \Rightarrow x \wedge y \in F$

$\left. \begin{matrix} \\ \end{matrix} \right\} F \text{ is closed under}$
 $\begin{matrix} \\ \end{matrix} \quad \text{finite meet}$



Def An **ultrafilter** of a Bool. alg. B is a filter F s.t.

any of the following equivalent conditions hold:

- $\forall x \in B$ exactly one between x and $\neg x$ belongs to F
- a maximal element in the poset of **proper** filters (ordered by inclusion)
 $\hookrightarrow O \not\in F$
- $B \setminus F$ is an **ideal** \rightsquigarrow a downwards closed subset that is closed under finite joins ($\forall x, y \in I \Rightarrow x \vee y \in I$)

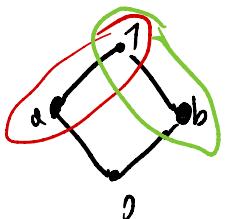
i.e. $x \vee y \in F \Rightarrow x \in F \text{ or } y \in F$

$0 \notin F$

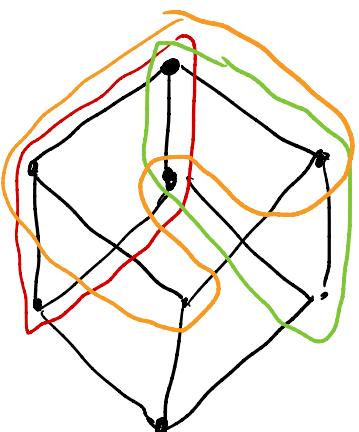
Examples of ultrafilters.

$1:0$ has no ultrafilter

$1:1$ has exactly one ultrafilter: $\{1\}$



has exactly two ultrafilters: $\{a, 1\}$, $\{b, 1\}$



has exactly three ultrafilters.

In a finite Boolean algebra B , every ultrafilter is principal, i.e. it is of the form $\uparrow a := \{x \in B \mid a \leq x\}$, for some $a \in B$.