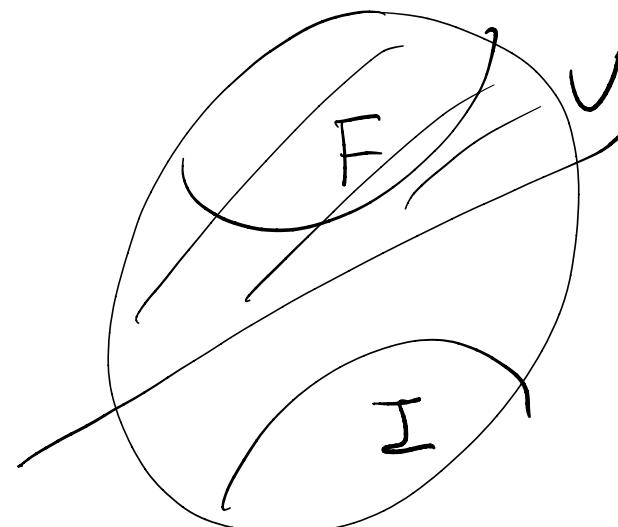


LAST TIME:

Stone's Repn. Thm

$$\begin{array}{ccc}
 \eta_B: B & \longrightarrow & \mathcal{P}(\text{Ult}(B)) \\
 b & \longmapsto & \{U \in \text{Ult}(B) \mid b \in U\}
 \end{array}
 \quad \left| \begin{array}{l} \text{HOM (EASY)} \\ \text{INT (HARD)} \end{array} \right.$$

Boolean Prime Ideal Theorem



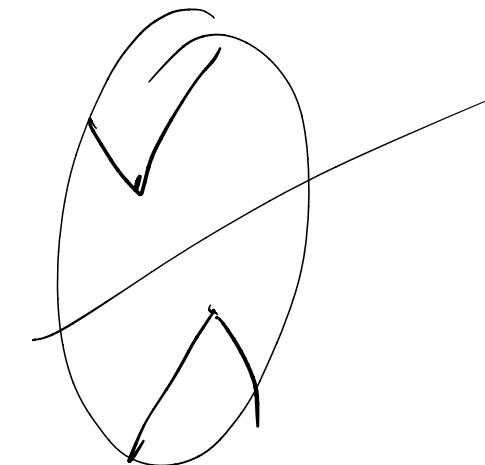
Separation by Ultrafilter Theorem

For $a, b \in B$ with $a \neq b$, there is an ultrafilter containing exactly one between a and b .

From a set-theoretic perspective

→ Every Bool. subalg. of a powerset is a Bool. algebra (SOUNDNESS)

→ Stone's RT says that the list of axioms is complete (COMPLETENESS)



LOGICAL.

$\text{Form}(L) \subseteq \text{Form}(L)$

For any theory T in a propositional language L

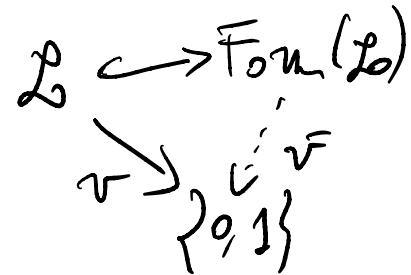
$\text{Form}(L) \not\models_T$

$\varphi \models_T \psi$ means that in every model $v: L \rightarrow \{0,1\}$ of T , $v(\varphi) = v(\psi)$.

LINDEMBAUM-TARSKI ALGEBRA ASSOCIATED TO T

$\text{Form}(L) \models_T$ in a Bool. alg.

(SOUNDNESS)



Conversely, any Bool. alg. in isomorphic

to $\text{Form}(L) \models_T$ for some T, L .

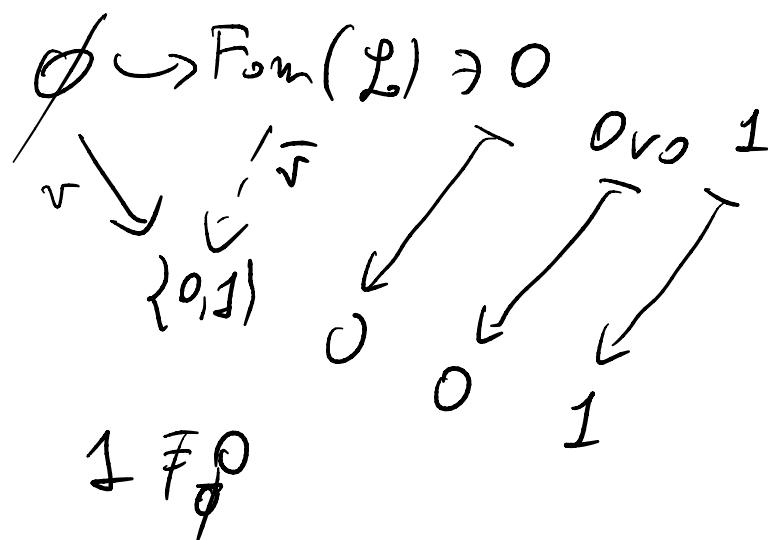
(COMPLETENESS)

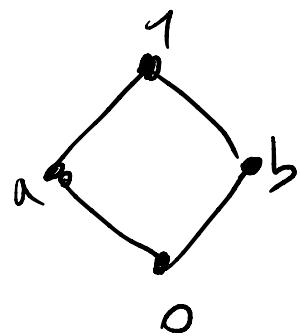
Before proving it, EXAMPLES

$2 \cong \text{Form}(L) \models_T$, with $L = \emptyset$

$T = \emptyset$

$\text{Form}(\emptyset) = \{0, 1, 0 \vee 0, 0 \vee 1, \top(0 \vee 1) \dots\}$





$$\mathcal{L} = \{p\}$$

$$T = \emptyset$$

$$\text{Form}(\mathcal{L}) = \{0, p, \neg p, 1, p \vee p, \dots\}$$

The Trivial Bool. alg

.

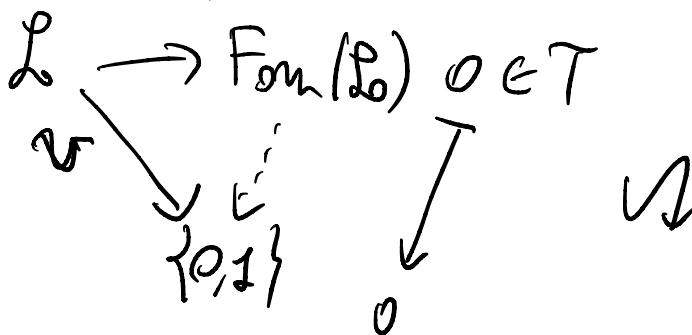
$$\mathcal{L} = \text{any}$$

$$T \subseteq \text{Form}(\mathcal{L})$$

$$\mathcal{L} = \emptyset$$

$$T = \{0\}$$

There are no model of T .



And so any two formulas ~~cancel~~

$$\equiv_T$$

$FC(\mathbb{N}) = \{\text{finite/cofinite subset of } \mathbb{N}\}$

* 1 2 3 - - - - -

$$\mathcal{L} = \{p_0, p_1, \dots\}$$

for $i \neq j \quad \neg(p_i \wedge p_j)$

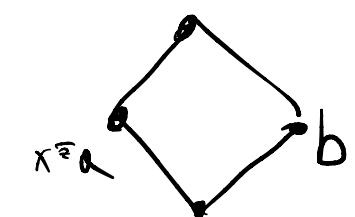
$$\mathcal{T} = \{ \neg(p_i \wedge p_j) \mid i \neq j \}$$

Let B be a Bool. alg. How to find \mathcal{L}, \mathcal{T} s.t.

$$B \simeq \text{Form}(\mathcal{L}) \stackrel{?}{=} \mathcal{T}$$

$$\mathcal{L} := B$$

- $\mathcal{T}:$
- for any $x \in B$, $\neg_B x \leftrightarrow \neg x$
 - for any $x, y \in B$, $(x \wedge_B y) \leftrightarrow (x \wedge y)$
 - $1_B \leftrightarrow 1$



$$\neg x$$

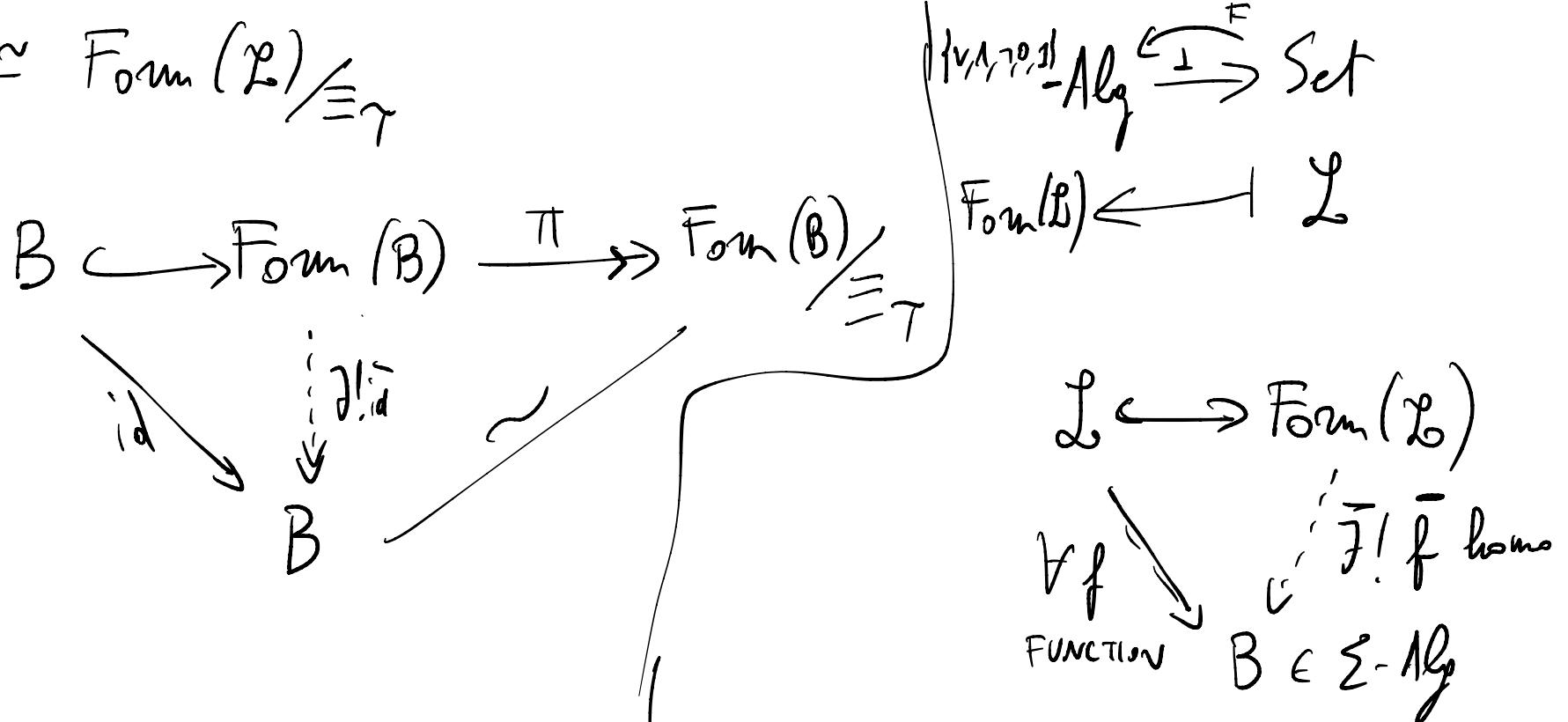
$$\neg_B x$$

$$\begin{array}{c} x \hookrightarrow y \\ (x \rightarrow y) \wedge (y \rightarrow x) \\ \parallel \\ (\exists x \vee y) \wedge (\neg y \vee x) \end{array}$$

for the
syntax
(in $\text{Form}(\mathcal{L})$)

CLAIM: $B \cong \text{Form}(L) / \equiv_\gamma$

Proof



LEMMA

Given a diagram in $\Sigma\text{-Alg}$.

$A \xrightarrow{f \circ g} C$ with f and g inj.
 $f \downarrow$
 B
 if, for all $a, a' \in A$
 we have $f(a) = f(a')$
 \uparrow
 $g(a) = g(a')$

Then there is an iso $B \simeq C$ making the diagram commute if \downarrow_B

IN VIEW OF THIS LEMMA, TO PROVE $B \cong \text{Form}(B) \vee_{\equiv_T}$,

it is enough
to prove

: For all $\varphi, \psi \in \text{Form}(B)$

$$\overline{\text{id}}(\varphi) = \overline{\text{id}}(\psi) \iff [\varphi]_{\equiv_T} = [\psi]_{\equiv_T}$$

$$\varphi \equiv_T \psi$$

for all $v: B \rightarrow 2$ models of T

$$\bar{v}(\varphi) = \bar{v}(\psi)$$

EXERCISE: For every $v: B \rightarrow 2$. TFAE:

- 1) v is a model of T
- 2) v is a homomorphism.

for all homom. $v: B \rightarrow 2$, $\bar{v}(\varphi) = \bar{v}(\psi)$.

\Rightarrow) EASY. EXERCISE

\Leftarrow ("HARD") Let us prove the contrapositive

$$\overline{\overline{id}(\varphi)} \neq \overline{\overline{id}(\psi)}$$

$\wedge \quad \quad \quad \uparrow$
 $B \quad \quad \quad B$

By the "Separation by ultrafilter theorem,
there is an ultrafilter
containing one between
 $\overline{id}(\varphi)$ and $\overline{id}(\psi)$

but not the other one,
i.e. there is a homom.

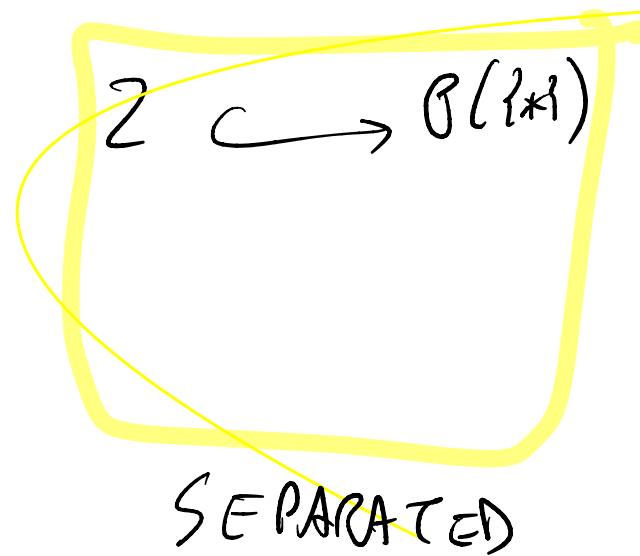
$$v: B \rightarrow 2 \text{ s.t.}$$

$$v(\overline{id}(\varphi)) \neq v(\overline{id}(\psi))$$

CLAIM: $\overline{v}(\varphi) \neq \overline{v}(\psi)$.

By uniqueness in the univ. prop.
of the unit,

$\overline{v} = v \circ \overline{id}$. This finishes the
claim.



$i: Z \hookrightarrow P\{x, y\}$
 $0 \mapsto \emptyset$
 $1 \mapsto \{x, y\}$

NOT SEPARATED

$FC(\mathbb{N}) \hookrightarrow P(\mathbb{N})$

$z \mapsto z$

$\mathbb{N} = \bigcup_{n \in \mathbb{N}} \{n\}$

IS NOT COMPACT

$j: FC(\mathbb{N}) \hookrightarrow P(\mathbb{N} \cup \{\infty\})$
 $z \mapsto \begin{cases} z & \text{if } z \text{ is finite} \\ \mathbb{N} \cup \{\infty\} & \text{if } z \text{ is infinite.} \end{cases}$

COMPACT
 \rightarrow Every cover of $\mathbb{N} \cup \{\infty\}$ by elements in the image of j has a finite subcover.

SPOILER: SEPARATION + COMPACTNESS

CHARACTERIZES

CANONICAL REPRESENTATIONS.

LEMMA (Canonical repn. is "separated")

Let B be a Bool. Alg.

Let $U, U' \in \text{Ult}(B)$ such that $U \neq U'$.

Then, there is $b \in B$ s.t.

$\gamma_B(b)$ contains exactly one between U and U' .

PROOF

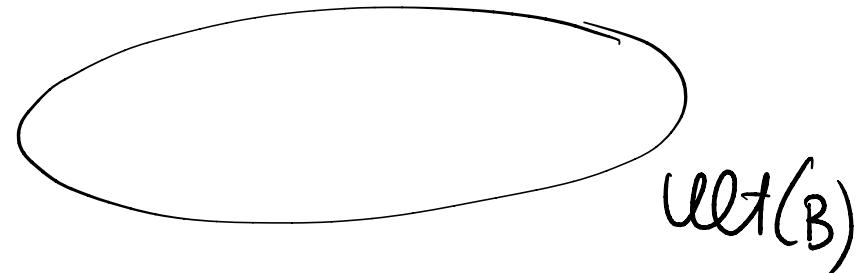
$U \neq U' \Rightarrow \exists b \in B$ s.t. b belongs to exactly one of the two.

$b \in U$

\uparrow

$\forall v \in \gamma_B(b)$

$$\gamma_B: B \hookrightarrow \wp(\text{Ult}(B))$$



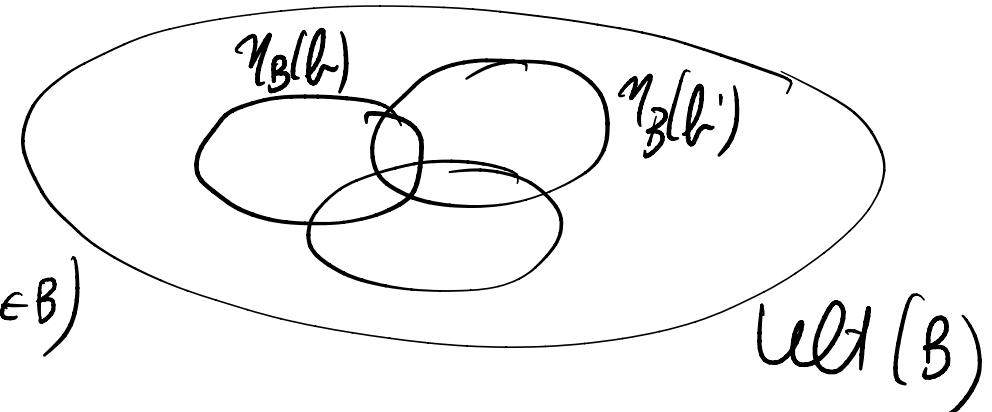
LEMMA (Canonical repn. in "compact")

Let B be a Bool alg.

Every cover of $\text{Ult}(B)$ by

elements of the form $\eta_B(b_i)$ ($b_i \in B$)

has a finite subcover



PROOF

$$\text{Ult}(B) = \bigcup_{i \in I} \eta_B(b_i) \rightsquigarrow \text{For every ultrafilter } V, \exists i \in I : V \in \eta_B(b_i)$$

$b_i \in V$

Consider the ideal generated by $\{b_i\}$: $J := \bigcup \{b_{i_1}, \dots, b_{i_n} \mid i_1, \dots, i_n \in I\}$

CLAIM: $1 \in J$.

Proof of claim: BwOC, suppose not: $1 \notin J$.

$\{1\}$ is a filter, disjoint from J .

\Rightarrow By the Bool. Pain Id. Thm, there is $U \in \text{Ult}(B)$ s.t. $\{1\} \subseteq U, U \cap J = \emptyset$.

\Rightarrow By hypoth. $\exists i \in I$ s.t. $b_i \in V$ $\bigcup_{j \in J} V_{i,j} = \emptyset$

This proves the claim: $1 \in J$. \square

$1 \in I = \bigcup \{b_{i,1} \vee \dots \vee b_{i,n} \mid i_1, \dots, i_n \in I\}$

$$\gamma_B(1) \leq \gamma_B(b_{i,1}) \vee \dots \vee \gamma_B(b_{i,n})$$

$\parallel =$

$\text{Def}(b)$

$$B \hookrightarrow \wp(X)$$

$$\tau \subseteq \wp(X)$$

Let's topologise.

Stone $\xrightarrow{\text{spac}} \text{Bool. Alg.}$

Given a Top. space X , we have a Bool. Alg.

$\{\text{clopens of } X\}$

Clop= closed and open

EXAMPLE: In a discrete space:
every subset is clopen

In $[0,1]$ $[0,1] \neq \emptyset$.

In $[0,1] \cup [2,3]$: $\emptyset, [0,1], [2,3], [0,1] \cup [2,3]$

$0 \dots \frac{1}{4} \frac{1}{3} \frac{1}{2} \dots \in \mathbb{R}$

The clopens: for every finite subset Z of $\mathbb{N} \setminus \{0\}$,

$\{\frac{1}{n} \mid n \in Z\}$ is a clopen,

and also its complement.

Ex: these are the only clopens.

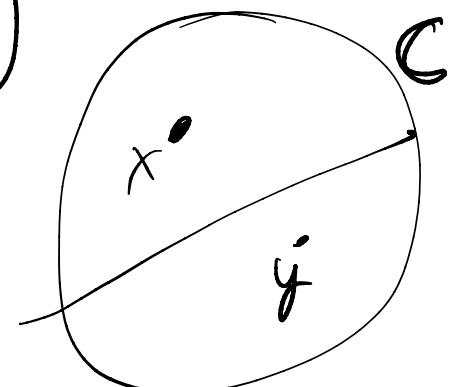
$\text{Clop}(X) \cong \text{FC}(\mathbb{N})$

Def. A Stone space is a topological space X s.t. Hausdorff.

- ① X is Totally separated, i.e. "clopens separate the points", i.e. for all $x, y \in X$ with $x \neq y$ there is a clopen C s.t. $x \in C, y \notin C$.
- ② X is compact (open covers have finite subcovers)

EQUIV: compact Hausdorff totally disconnected

|| || 0-dimensional



EXAMPLE: Finite discrete space. (Every finite Stone space is discrete)

0 \dots $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ 1 -

one-point
Alexandroff compactif. of \mathbb{N}

Open: \rightarrow any set not containing ∞
 \rightarrow any cofinite set containing ∞

Clopens: \rightarrow finite sets, not containing ∞
 \rightarrow cofinite sets containing ∞

NON-EXAMPLES $\Rightarrow \{x, y\}$ indiscrete (opens: $\emptyset, \{x, y\}$)

$\vdash [0, 1]$

\hookrightarrow Any infinite discrete space.

Stone spaces \longleftrightarrow Bool. Alg

$X \xrightarrow{\cong} \text{Clop}(x)$

$\text{Ult}(B) \longleftrightarrow B$

We Topologize $\text{Ult}(B)$, making it a Stone space, with the Stone Topology:

The family $\{\eta_B(b) \mid b \in B\}$ is closed under finite intersections, so it forms a basis for a topology.

Stone topology := the topology generated by the sets of
the form $\eta_B(b)$, for $b \in B$

set of "arbitrary unions of elements of the form $\eta_B(b)$ ".

$FC(N)$

LEMMA

$Ult(B)$ with the Stone Top., is compact

PROOF: to check compactness. it is enough to check it on a basis.

THIS is "the canonical representation is compact".

LEMMA

The closures of $Ult(B)$ are precisely the sets of the form
 $\eta_B(b)$, for $b \in B$

PROOF: EXERCISE

LEMMA: $\text{Ult}(B)$ is Totally separated

PROOF This is "The canonical repr. is separated."

THM. $\eta_B: B \rightarrow \text{Chop}(\text{Ult}(B))$ $\eta_B: B \hookrightarrow P(\text{Ult}(B))$
 $b \mapsto \{U \in \text{Ult}(B) \mid b \in U\}$
is an iso of Bool. Alg.

By \otimes

Stone Sp $\xrightarrow[\text{Ult}] {\text{Chop}} \text{Bool. Alg}$

THM

Given a Stone space X ,

$$\varepsilon_X: X \longrightarrow \text{Uld}(\text{Clop}(X))$$

$$x \longmapsto \{A \in \text{Clop}(X) \mid x \in A\}$$

is a homeomorphism.



PROOF

• CONT. \Leftarrow EASY.

• INJ. \Leftarrow X TOTALLY SEPARATED

• SURJ. \Leftarrow X COMPACT

(Any bij cont. map between
compact Hausdorff spaces is
a homeomorphism
BECAUSE in comp. Hausd.

CLOSED \Leftrightarrow COMPACT.

and \Rightarrow every continuous
map \Rightarrow closed